A spectral method to detect community structure based on distance modularity matrix

2017 ◽  
Vol 31 (20) ◽  
pp. 1750129 ◽  
Author(s):  
Jin-Xuan Yang ◽  
Xiao-Dong Zhang

There are many community organizations in social and biological networks. How to identify these community structure in complex networks has become a hot issue. In this paper, an algorithm to detect community structure of networks is proposed by using spectra of distance modularity matrix. The proposed algorithm focuses on the distance of vertices within communities, rather than the most weakly connected vertex pairs or number of edges between communities. The experimental results show that our method achieves better effectiveness to identify community structure for a variety of real-world networks and computer generated networks with a little more time-consumption.

2018 ◽  
Vol 32 (03) ◽  
pp. 1850018
Author(s):  
Yang Zhou ◽  
Haifei Miao ◽  
Wei Liu ◽  
Xiaoyun Chen ◽  
Jianjun Cheng

Community structure is one of the most important features of complex networks, a large number of methods have been proposed to extract community structures from networks. However, some of those methods suffer from the high time complexity, and some of them cannot obtain the acceptable results. In this paper, we borrow the idea from the database theory, and propose the concepts of functional dependency (FD) between nodes and node closure first, then we utilize these concepts to extract communities. This method takes both effectiveness and efficiency into consideration, the community detection process can be accomplished with O(m) time consumption. We conducted extensive experiments both on some synthetic networks and on some real-world networks, the experimental results demonstrate that the method can detect communities from a given network successfully.


2012 ◽  
Vol 6-7 ◽  
pp. 985-990
Author(s):  
Yan Peng ◽  
Yan Min Li ◽  
Lan Huang ◽  
Long Ju Wu ◽  
Gui Shen Wang ◽  
...  

Community structure detection has great importance in finding the relationships of elements in complex networks. This paper presents a method of simultaneously taking into account the weak community structure definition and community subgraph density, based on the greedy strategy for community expansion. The results are compared with several previous methods on artificial networks and real world networks. And experimental results verify the feasibility and effectiveness of our approach.


2006 ◽  
Vol 17 (07) ◽  
pp. 1055-1066 ◽  
Author(s):  
XIANGJUN SHEN ◽  
ZENGFU WANG ◽  
LENAN WU

The investigation of community structures in complex networks is an important issue in many domains and disciplines. In this paper, we propose a novel method to address the problem based on evaluation of the community structure. By testing the proposed algorithm on artificial and real-world networks, experimental results demonstrate that our approach is both accurate and fast. Our algorithm may shed light on uncovering the universal principles of network architectures and topologies.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Saeed Shahrivari ◽  
Saeed Jalili

Enumerating all subgraphs of an input graph is an important task for analyzing complex networks. Valuable information can be extracted about the characteristics of the input graph using all-subgraph enumeration. Notwithstanding, the number of subgraphs grows exponentially with growth of the input graph or by increasing the size of the subgraphs to be enumerated. Hence, all-subgraph enumeration is very time consuming when the size of the subgraphs or the input graph is big. We propose a parallel solution namedSubenumwhich in contrast to available solutions can perform much faster. Subenum enumerates subgraphs using edges instead of vertices, and this approach leads to a parallel and load-balanced enumeration algorithm that can have efficient execution on current multicore and multiprocessor machines. Also, Subenum uses a fast heuristic which can effectively accelerate non-isomorphism subgraph enumeration. Subenum can efficiently use external memory, and unlike other subgraph enumeration methods, it is not associated with the main memory limits of the used machine. Hence, Subenum can handle large input graphs and subgraph sizes that other solutions cannot handle. Several experiments are done using real-world input graphs. Compared to the available solutions, Subenum can enumerate subgraphs several orders of magnitude faster and the experimental results show that the performance of Subenum scales almost linearly by using additional processor cores.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Fanrong Meng ◽  
Feng Zhang ◽  
Mu Zhu ◽  
Yan Xing ◽  
Zhixiao Wang ◽  
...  

Community detection in complex networks has become a research hotspot in recent years. However, most of the existing community detection algorithms are designed for the static networks; namely, the connections between the nodes are invariable. In this paper, we propose an incremental density-based link clustering algorithm for community detection in dynamic networks, iDBLINK. This algorithm is an extended version of DBLINK which is proposed in our previous work. It can update the local link community structure in the current moment through the change of similarity between the edges at the adjacent moments, which includes the creation, growth, merging, deletion, contraction, and division of link communities. Extensive experimental results demonstrate that iDBLINK not only has a great time efficiency, but also maintains a high quality community detection performance when the network topology is changing.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Kun Deng ◽  
Jianpei Zhang ◽  
Jing Yang

Since traditional mobile recommendation systems have difficulty in acquiring complete and accurate user information in mobile networks, the accuracy of recommendation is not high. In order to solve this problem, this paper proposes a novel mobile recommendation algorithm based on link community detection (MRLD). MRLD executes link label diffusion algorithm and maximal extended modularity (EQ) of greedy search to obtain the link community structure, and overlapping nodes belonging analysis (ONBA) is adopted to adjust the overlapping nodes in order to get the more accurate community structure. MRLD is tested on both synthetic and real-world networks, and the experimental results show that our approach is valid and feasible.


2014 ◽  
Vol 28 (09) ◽  
pp. 1450074 ◽  
Author(s):  
Benyan Chen ◽  
Ju Xiang ◽  
Ke Hu ◽  
Yi Tang

Community structure is an important topological property common to many social, biological and technological networks. First, by using the concept of the structural weight, we introduced an improved version of the betweenness algorithm of Girvan and Newman to detect communities in networks without (intrinsic) edge weight and then extended it to networks with (intrinsic) edge weight. The improved algorithm was tested on both artificial and real-world networks, and the results show that it can more effectively detect communities in networks both with and without (intrinsic) edge weight. Moreover, the technique for improving the betweenness algorithm in the paper may be directly applied to other community detection algorithms.


2019 ◽  
Vol 63 (9) ◽  
pp. 1417-1437
Author(s):  
Natarajan Meghanathan

Abstract We propose a quantitative metric (called relative assortativity index, RAI) to assess the extent with which a real-world network would become relatively more assortative due to link addition(s) using a link prediction technique. Our methodology is as follows: for a link prediction technique applied on a particular real-world network, we keep track of the assortativity index values incurred during the sequence of link additions until there is negligible change in the assortativity index values for successive link additions. We count the number of network instances for which the assortativity index after a link addition is greater or lower than the assortativity index prior to the link addition and refer to these counts as relative assortativity count and relative dissortativity count, respectively. RAI is computed as (relative assortativity count − relative dissortativity count) / (relative assortativity count + relative dissortativity count). We analyzed a suite of 80 real-world networks across different domains using 3 representative neighborhood-based link prediction techniques (Preferential attachment, Adamic Adar and Jaccard coefficients [JACs]). We observe the RAI values for the JAC technique to be positive and larger for several real-world networks, while most of the biological networks exhibited positive RAI values for all the three techniques.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 977
Author(s):  
Nickie Lefevr ◽  
Andreas Kanavos ◽  
Vassilis C. Gerogiannis ◽  
Lazaros Iliadis ◽  
Panagiotis Pintelas

Complex networks constitute a new field of scientific research that is derived from the observation and analysis of real-world networks, for example, biological, computer and social ones. An important subset of complex networks is the biological, which deals with the numerical examination of connections/associations among different nodes, namely interfaces. These interfaces are evolutionary and physiological, where network epidemic models or even neural networks can be considered as representative examples. The investigation of the corresponding biological networks along with the study of human diseases has resulted in an examination of networks regarding medical supplies. This examination aims at a more profound understanding of concrete networks. Fuzzy logic is considered one of the most powerful mathematical tools for dealing with imprecision, uncertainties and partial truth. It was developed to consider partial truth values, between completely true and completely false, and aims to provide robust and low-cost solutions to real-world problems. In this manuscript, we introduce a fuzzy implementation of epidemic models regarding the Human Immunodeficiency Virus (HIV) spreading in a sample of needle drug individuals. Various fuzzy scenarios for a different number of users and different number of HIV test samples per year are analyzed in order for the samples used in the experiments to vary from case to case. To the best of our knowledge, analyzing HIV spreading with fuzzy-based simulation scenarios is a research topic that has not been particularly investigated in the literature. The simulation results of the considered scenarios demonstrate that the existence of fuzziness plays an important role in the model setup process as well as in analyzing the effects of the disease spread.


Author(s):  
Asma Chader ◽  
Hamid Haddadou ◽  
Leila Hamdad ◽  
Walid-Khaled Hidouci

With the emergence of social networking platforms and great amount of generated content, analyzing people interactions and behaviour raises new opportunities for several applications such as user interest profiling. In this context, this paper highlights the importance of considering relationship strength to infer more refined and relevant interests from user’s direct neighbourhood. We propose WeiCoBSP, a Weight-aware Community-Based Social Profiling approach that leverages strength of ego-friend and friend-friend relationships. The former, describing connections with the profiled user, allows to identify most relevant people from whom to infer worthwhile interests. The latter qualifies connections among user’s neighbourhood and enables depicting the most realistic community structure of the network. We present an empirical evaluation performed on real world co-authorship networks, validating our approach. Experimental results demonstrate the ability of WeiCoBSP to infer user’s interest accurately, improving greatly the unweighted CoBSP process but also results of experiments assessing separately ego-friend and friend-friend relationships strength.


Sign in / Sign up

Export Citation Format

Share Document