scholarly journals Single-cell RNA-seq profiling of mouse endothelial cells in response to pulmonary arterial hypertension

2021 ◽  
Author(s):  
Julie Rodor ◽  
Shiau-Haln Chen ◽  
Jessica P Scanlon ◽  
João P Monteiro ◽  
Axelle Caudrillier ◽  
...  

Abstract Aims Endothelial cell dysfunction drives the initiation and pathogenesis of pulmonary arterial hypertension (PAH). We aimed to characterise endothelial cell (EC) dynamics in PAH at single-cell resolution. Methods and Results We carried out single-cell RNA sequencing (scRNA-seq) of lung ECs isolated from an EC lineage-tracing mouse model in Control and SU5416/Hypoxia-induced PAH conditions. EC populations corresponding to distinct lung vessel types, including two discrete capillary populations, were identified in both Control and PAH mice. Differential gene expression analysis revealed global PAH-induced EC changes that were confirmed by bulk RNA-seq. This included upregulation of the major histocompatibility complex class II pathway, supporting a role for ECs in the inflammatory response in PAH. We also identified a PAH response specific to the second capillary EC population including upregulation of genes involved in cell death, cell motility and angiogenesis. Interestingly, four genes with genetic variants associated with PAH were dysregulated in mouse ECs in PAH. To compare relevance across PAH models and species, we performed a detailed analysis of EC heterogeneity and response to PAH in rats and humans through whole-lung PAH scRNA-seq datasets, revealing that 51% of up-regulated mouse genes were also up-regulated in rat or human PAH. We identified promising new candidates to target endothelial dysfunction including CD74, the knockdown of which regulates EC proliferation and barrier integrity in vitro. Finally, with an in silico cell ordering approach, we identified zonation-dependent changes across the arteriovenous axis in mouse PAH and showed upregulation of the Serine/threonine-protein kinase Sgk1 at the junction between the macro- and micro-vasculature. Conclusions This study uncovers PAH-induced EC transcriptomic changes at a high resolution, revealing novel targets for potential therapeutic candidate development.

2020 ◽  
Vol 40 (9) ◽  
pp. 2293-2309 ◽  
Author(s):  
Avinash Khandagale ◽  
Mikael Åberg ◽  
Gerhard Wikström ◽  
Sara Bergström Lind ◽  
Ganna Shevchenko ◽  
...  

Objective: Extracellular vesicles (EVs) have the potential to act as intercellular communicators. The aims were to characterize circulating EVs in patients with pulmonary arterial hypertension (PAH) and to explore whether these EVs contribute to endothelial activation and angiogenesis. Approach and Results: Patients with PAH (n=70) and healthy controls (HC; n=20) were included in this cross-sectional study. EVs were characterized and human pulmonary endothelial cells (hPAECs) were incubated with purified EVs. Endothelial cell activity and proangiogenic markers were analyzed. Tube formation analysis was performed for hPAECs, and the involvement of PSGL-1 (P-selectin glycoprotein ligand 1) was evaluated. The numbers of CD62P + , CD144 + , and CD235a EVs were higher in blood from PAH compared with HC. Thirteen proteins were differently expressed in PAH and HC EVs, where complement fragment C1q was the most significantly elevated protein ( P =0.0009) in PAH EVs. Upon EVs-internalization in hPAECs, more PAH compared with HC EVs evaded lysosomes ( P <0.01). As oppose to HC, PAH EVs stimulated hPAEC activation and induced transcription and translation of VEGF-A (vascular endothelial growth factor A; P <0.05) and FGF (fibroblast growth factor; P <0.005) which were released in the cell supernatant. These proangiogenic proteins were higher in patient with PAH plasma compered with HC. PAH EVs induced a complex network of angiotubes in vitro, which was abolished by inhibitory PSGL-1antibody. Anti-PSGL-1 also inhibited EV-induced endothelial cell activation and PAH EV dependent increase of VEGF-A. Conclusions: Patients with PAH have higher levels of EVs harboring increased amounts of angiogenic proteins, which induce activation of hPAECs and in vitro angiogenesis. These effects were partly because of platelet-derived EVs evasion of lysosomes upon internalization within hPAEC and through possible involvement of P-selectin-PSGL-1 pathway.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
E Oliver ◽  
S.F Rocha ◽  
M Spaczynska ◽  
D.V Lalama ◽  
M Gomez ◽  
...  

Abstract Background Endothelial dysfunction is one of the most important hallmarks of pulmonary arterial hypertension (PAH). This leads to anomalous production of vasoactive mediators that are responsible for a higher vascular tone and a subsequent increase in pulmonary artery pressure (PAP), and to an increased vascular permeability that favors perivascular inflammation and remodeling, thus worsening the disease. Therefore, preservation of the endothelial barrier could become a relevant therapeutic strategy. Purpose In previous studies, others and we have suggested the pharmacological activation of the β3-adrenergic receptor (AR) as a potential therapeutic strategy for pulmonary hypertension (PH) due to left heart disease. However, its potential use in other forms of PH remain unclear. The aim of the present study was to elucidate whether the β3-AR agonist mirabegron could preserve pulmonary endothelium function and be a potential new therapy in PAH. Methods For this purpose, we have evaluated the effect of mirabegron (2 and 10 mg/kg·day) in different animal models, including the monocrotaline and the hypoxia-induced PAH models in rats and mice, respectively. Additionally, we have used a transgenic mouse model with endothelial overexpression of human β3-AR in a knockout background, and performed in vitro experiments with human pulmonary artery endothelial cells (HPAECs) for mechanistic experiments. Results Our results show a dose dependent effect of mirabegron in reducing mean PAP and Right Ventricular Systolic Pressure in both mice and rats. In addition, the use of transgenic mice has allowed us to determine that pulmonary endothelial cells are key mediators of the beneficial role of β3-AR pathway in ameliorating PAH. Mechanistically, we have shown in vitro that activation of β3-AR with mirabegron protects HPAECs from hypoxia-induced ROS production and mitochondrial fragmentation by restoring mitochondrial fission/fusion dynamics. Conclusions This protective effect of mirabegron would lead to endothelium integrity and preserved pulmonary endothelial function, which are necessary for a correct vasodilation, avoiding increased permeability and remodeling. Altogether, the current study demonstrates a beneficial effect of the β3-AR agonist mirabegron that could open new therapeutic avenues in PAH. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Programa de Atracciόn de Talento, Comunidad de Madrid


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (03) ◽  
pp. 61-67
Author(s):  
P. P Dighe ◽  
H. M Tank ◽  

Pulmonary arterial hypertension (PAH) means high blood pressure in the lungs caused by obstruction in the small arteries of the lungs.The current study involves the fabrication of oral matrix sustained release tablet of bosentan monohydrate, a dual endothelin receptor antagonist, the optimisation of its in vitro release and characterisation. Methocel K4M PremiumDC2, a directly compressible HPMC grade, has been used as the sustained release polymer. Pregelatinised starch is used as a diluent and release modifier and sodium lauryl sulphate as a solubiliser. The influence of the above variables on drug release is measured using a 23 factorial design using design expert software. Surface response plots show significant interaction among the formulation variables, thus aiding in optimization of bilayer tablet.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
France Dierick

AIM: PW1+ progenitors were identified in various adult tissues and can differentiate in smooth muscle cells (SMC) in vitro. Our hypothesis is that PW1+ progenitors are recruited to participate in the vascular remodeling during pulmonary arterial hypertension (PAH). METHODS: PW1IRESnLacZ+/- mice express the β-galactosidase as a reporter gene for PW1 expression allowing to follow the lineage of PW1+ cells during a few days. These mice were exposed to chronic hypoxia (CH) to induce PAH, lung vessels neomuscularisation and SMC proliferation. PW1+ and β-Gal+ cells were studied by FACS and by immunofluorescence. RESULTS: PW1+ cells are localized in the lung parenchyma and in the perivascular zone in rodent and human lung. Two PW1+ populations were identified by flow cytometry in the mouse lung 1/ a Sca-1high/CD34high/PDGFR-α+ population which differentiates into calponin+ or α-SMA+ SMC and into vWF+ endothelial cell and 2/ a CD34-/CD146+ population expressing pericyte markers. After 2-4 days of CH, the number of lung PW1+ cells is increased (x3.5, p<0.01) and, in small pulmonary vessels media, the proportion of β-Gal+ SMC derived from PW1+ cells is increased (64±6% vs 35±3%, p<0.05) suggesting a recruitment and differentiation of PW1+ cells into lung vascular SMC. Moreover WT mice irradiated and engrafted with GFP+/β-Gal+ bone marrow cells do not show any increase in GFP+ SMC in lung vessels and do not show any β-Gal+ cells in the lung indicating that the lung PW1+ progenitors are not derived from bone marrow . Moreover, in the human PAH lung, PW1+ cells were observed in remodeled vascular structures: in the media of remodeled vessel and in plexiform lesions. CONCLUSION: These results suggest that lung resident PW1+ progenitors are recruited to participate in the vascular remodeling of small pulmonary vessels in experimental and human PAH. These progenitors show characteristics of pericytes and of vascular progenitors.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Gopinath Sutendra ◽  
Sebastien Bonnet ◽  
Paulette Wright ◽  
Peter Dromparis ◽  
Alois Haromy ◽  
...  

Nogo was first identified as an inhibitor of neuronal axonal regeneration. Recently, Nogo-B was implicated in the proliferative and anti-apoptotic remodeling in systemic arteries; reduced Nogo-B expression was seen in remodeled mouse femoral arteries following injury. Pulmonary arterial hypertension (PAH) is also characterized by proliferative/anti-apoptotic remodeling in pulmonary arteries (PA), sparing systemic vessels. PAH PA smooth muscle cells (PASMC) are characterized by mitochondrial hyperpolarization (increased ΔΨm), decreased production of reactive oxygen species (ROS) (suppressing mitochondria-dependent apoptosis), down-regulation of Kv1.5 and activation of the transcription factor NFAT (promoting contraction and proliferation). We found that in contrast to systemic vessels, Nogo-B expression is significantly increased in vivo and in vitro in PAs and PASMCs from patients (n=6) and mice (n=42) with PAH, compared to normals. We hypothesized that Nogo is involved in the pathogenesis of PAH . Nogo −/− mice (n=7) had a normal phenotype and, in contrast to Nogo +/+ , did not develop chronic hypoxia (CH)-induced PAH assessed invasively (catheterization, RV/LV+Septum) and non-invasively (pulmonary artery acceleration time and treadmill performance) (n=7, Table ). CH- Nogo +/+ PASMC had the expected increase in ΔΨm (measured by TMRM), decreased ROS (MitoSOX), increased [Ca ++ ] i (FLUO3), decreased Kv1.5 (immunohistochemistry) and NFAT activation (nuclear translocation). None of these changes occurred in CH- Nogo −/− PASMC while all were induced in normoxic Nogo +/+ PASMC by adenoviral over-expression of Nogo-B . Heterozygote CH- Nogo +/− (n=7) values were between Nogo −/− and Nogo +/+ suggesting a gene dose-dependent effect. Nogo is over-expressed in human and rodent PAH and induces critical features of the PAH phenotype. Nogo targeting might represent a novel and selective therapeutic strategy for PAH. Table


Sign in / Sign up

Export Citation Format

Share Document