scholarly journals Effect of intensity and duration of anthropic noises on European mink locomotor activity and faecal cortisol metabolite levels

2022 ◽  
Author(s):  
Lorena Ortiz-Jiménez ◽  
Carlos Iglesias-Merchan ◽  
Alba Itzel Martínez-Salazar ◽  
Isabel Barja

Abstract Human activities involving noise emission can affect wild animals. European mink was exposed to road noise and human voice playbacks to analyse how sound intensity level and duration of both noises altered the time that individuals were active and if their faecal cortisol metabolite (FCM) levels varied. A Hierarchical Analysis Cluster was performed to established two mink groups with respect to both noise source type: short duration/low intensity (SL) and long duration/high intensity (LH). We performed General Linear Mixed Models to evaluate the variation in locomotor activity duration (s) and FCM (ng/g) levels, respectively. The results showed both road noise and human voices decreased locomotor activity duration in SL more sharply compared to LH, and human voices were the triggers that induced the most pronounced response to both exposure conditions. FCM levels increased in SL compared to LH during road noise while the opposite happened during human voices. Differences based on sex and age of individuals were observed. In conclusion, noise characteristics given by the sound type determined the variations in locomotor activity duration while noise exposure level determined the variations in FCM levels. Attention should be paid to noisy activities (e.g. recreational activities for visitors in protected natural areas) and loud groups of people to conserve wildlife, especially noise sensitive species.

2015 ◽  
Vol 792 ◽  
pp. 499-504
Author(s):  
Roman Bikeev ◽  
Viktor Serikov ◽  
Vladimir Cherednichenko

Mathematical model of appearance and progress of noise characteristics in super-power electric arc steel furnaces is considered in the paper. It is shown that noise generation is coupled with pulsations of axial plasma flows in arc discharge caused by fluctuations of electrodynamic pressure on discharge column formed by interaction between its own magnetic field and current flowing in the arc. Simulation results have shown that pressure in arc axis alternates at frequency 100 Hz with amplitude 6600 N/m2 for arc current 80 kA. Basic frequencies of arc noise are aliquot to 100 Hz, that fact is verified by exploitation practice of arc steel furnaces. Sound intensity level in workspace riches 160 dB, but thanks to shielding by case and fused metal and slag it falls to 115–120 dB on service area of furnace. It has shown that maximal amplitudes in frequency spectrum of the noise are in range 5–150 Hz. Generated noise amplitudes and frequency ranges depend on arc discharges' resistance, which are defined by ionization level of gases. According to Saha equation, iron vapor is ionized by 70 %, calcium vapor – by 95 %, and ionization level of air is no more than 1.5 %. It has been experimentally shown that in melting of stock coated with lime noise intensity is decreased by 6–8 % against no-lime iron melting because of lower calcium ionization potential (6.11 eV). It has been ascertained that for long arc with high voltages the sound intensity is decreased by 3–4 % as compared with short arc of the same current. It has shown that suppression of low-frequency components of noise energy is possible by optimization of electromechanical oscillations of electrodes, electrode-holders and cable strips, additionally to inclusion lime in stock mixture. The appropriateness of improvement electric arc furnaces hermeticity and development of the furnaces for operation with lowered currents and enlarged transformers' voltages have been approved.


2013 ◽  
Vol 1 (1) ◽  
Author(s):  
Hardini Tjan ◽  
Fransiska Lintong ◽  
Wenny Supit

Abstract: Noise induced hearing loss is caused by noise loud in the long period and a noisy work environment. Noisy work environment is a major problem in occupational health in various countries. The relationship between excessive noise exposure and hearing loss has been recognised since ancient times. Early epidemiological studies of noise induced hearing loss explored the damage risk relationship between occupational noise exposure level and the degree of hearing loss. The purpose of this study is to determine effect of engine noise electronics to auditory disfunction. The research methodeology used is an analytical method with a cross sectional approach. Samples were of 20 person taken from workers at the playground timezone and amazone. Data were obtained through questionnaires and examination of hearing function with the audiometri. Data were analyzed by using the Statistical Product and Service Solutions program (SPSS) and using the Fisher Exact test. Conclusion: The results showed that : There is a 75% hearing loss in all worker. The results of bivariate analysis showed there is no significant association between the hearing loss with the intensity level of noise (p = 0,032). The most common hearing loss is sensorineural deafness which generally occours in both ear. From the result of this study it can be concluded that the workers who work in a place that has the high intensity noise have greater risk of suffening from hearing loss. Keywords: Timezone and Amazone Workers, Noisy, Hearing.     Abstrak: Gangguan pendengaran akibat bising ialah gangguan pendengaran yang disebabkan akibat terpajan oleh bising yang cukup keras dalam jangka waktu yang cukup lama dan biasanya disebabkan oleh bising di lingkungan kerja. Bising lingkungan kerja merupakan masalah utama pada kesehatan kerja di berbagai negara. Hubungan antara paparan bising yang berlebihan dan kehilangan pendengaran telah dikenal sejak zaman kuno. Awal studi epidemiologi, gangguan pendengaran yang disebabkan oleh bising mengeksplorasi adanya hubungan atau faktor resiko antara pekerjaan, paparan tingkat kebisingan dan derajat gangguan pendengaran. Tujuan penelitian ini untuk mengetahui efek bising mesin elektronika terhadap gangguan fungsi pendengaran. Metode penelitian yang digunakan yaitu metode analitik dengan menggunakan rancangan cross sectional study. Sampel berjumlah 20 orang yang diambil dari pekerja di tempat bermain timezone dan amazone. Data diperoleh melalui kuisioner dan pemeriksaan fungsi pendengaran dengan menggunakan Audiometri. Data dianalisis dengan menggunakan Statistical Program Product and Service Solution (SPSS) dan menggunakan uji Fisher Exact. Simpulan: Hasil penelitian menunjukkan bahwa : Terdapat gangguan pendengaran sebesar 75 % pada seluruh pekerja. Hasil analisis bivariat menunjukan ada hubungan yang bermakna antara gangguan pendengaran dengan tingkat intensitas bising (p =  0,032).  Gangguan pendengaran yang paling banyak diderita oleh pekerja adalah tuli sensorineural (persepsi) yang umumnya terjadi pada kedua telinga. Dari hasil penelitian ini dapat disimpulkan bahwa pekerja yang bekerja pada intensitas bising yang tinggi memiliki resiko lebih besar menderita gangguan pendengaran. Kata Kunci: Pekerja Timezone & Amazone, Bising, Pendengaran


Author(s):  
Feifan Chen ◽  
Zuwei Cao ◽  
Emad M. Grais ◽  
Fei Zhao

Abstract Purpose Noise-induced hearing loss (NIHL) is a global issue that impacts people’s life and health. The current review aims to clarify the contributions and limitations of applying machine learning (ML) to predict NIHL by analyzing the performance of different ML techniques and the procedure of model construction. Methods The authors searched PubMed, EMBASE and Scopus on November 26, 2020. Results Eight studies were recruited in the current review following defined inclusion and exclusion criteria. Sample size in the selected studies ranged between 150 and 10,567. The most popular models were artificial neural networks (n = 4), random forests (n = 3) and support vector machines (n = 3). Features mostly correlated with NIHL and used in the models were: age (n = 6), duration of noise exposure (n = 5) and noise exposure level (n = 4). Five included studies used either split-sample validation (n = 3) or ten-fold cross-validation (n = 2). Assessment of accuracy ranged in value from 75.3% to 99% with a low prediction error/root-mean-square error in 3 studies. Only 2 studies measured discrimination risk using the receiver operating characteristic (ROC) curve and/or the area under ROC curve. Conclusion In spite of high accuracy and low prediction error of machine learning models, some improvement can be expected from larger sample sizes, multiple algorithm use, completed reports of model construction and the sufficient evaluation of calibration and discrimination risk.


1992 ◽  
Vol 30 (2) ◽  
pp. 65-76 ◽  
Author(s):  
Seyed Mohammad MIRBOD ◽  
Ryoichi INABA ◽  
Hideyo YOSHIDA ◽  
Chisato NAGATA ◽  
Yoko KOMURA ◽  
...  

2020 ◽  
Vol 185 (9-10) ◽  
pp. e1551-e1555
Author(s):  
Sean E Slaven ◽  
Benjamin M Wheatley ◽  
Daniel L Christensen ◽  
Sameer K Saxena ◽  
Robert J McGill

Abstract Introduction Noise exposure is an occupational health concern for certain professions, especially military servicemembers and those using power tools on a regular basis. The purpose of this study was to quantify noise exposure during total hip arthroplasty (THA) and total knee arthroplasty (TKA) cases compared to the recommended standard for occupational noise exposure. Materials and Methods A sound level meter was used to record cumulative and peak noise exposure levels in 10 primary THA and 10 primary TKA surgeries, as well as 10 arthroscopy cases as controls. Measurements at the distance of the surgeon were taken in all cases. In TKA cases, measurements were taken at 3 feet and 8 feet from the surgeon, to simulate the position of the anesthetist and circulating nurse, respectively. Results Time-weighted average was significantly higher in THA (64.7 ± 5.2 dB) and TKA (64.5 ± 6.8 dB) as compared to arthroscopic cases (51.1 ± 7.5 dB, P < 0.001) and higher at the distance of the surgeon (64.5 ± 6.8 dB) compared to the anesthetist (52.9 ± 3.8 dB) and the circulating nurse (54.8 ± 11.2 dB, P = 0.006). However, time-weighted average was below the recommended exposure level of 85 dB for all arthroplasty cases. Peak levels did not differ significantly between surgery type or staff role, and no values above the ceiling limit of 140 dB were recorded. Surgeon’s daily noise dose percentage per case was 1.78% for THA and 2.04% for TKA. Conclusion Noise exposure in THA and TKA was higher than arthroscopic cases but did not exceed occupational standards. A daily dose percentage of approximately 2% per case indicates that repeated noise exposure likely does not reach hazardous levels in modern arthroplasty practice.


2021 ◽  
Author(s):  
Florian Occelli ◽  
Florian Hasselmann ◽  
Jérôme Bourien ◽  
Jean-Luc Puel ◽  
Nathalie Desvignes ◽  
...  

Abstract People are increasingly exposed to environmental noise through the cumulation of occupational and recreational activities, which is considered harmless to the auditory system, if the sound intensity remains <80 dB. However, recent evidence of noise-induced peripheral synaptic damage and central reorganizations in the auditory cortex, despite normal audiometry results, has cast doubt on the innocuousness of lifetime exposure to environmental noise. We addressed this issue by exposing adult rats to realistic and nontraumatic environmental noise, within the daily permissible noise exposure limit for humans (80 dB sound pressure level, 8 h/day) for between 3 and 18 months. We found that temporary hearing loss could be detected after 6 months of daily exposure, without leading to permanent hearing loss or to missing synaptic ribbons in cochlear hair cells. The degraded temporal representation of sounds in the auditory cortex after 18 months of exposure was very different from the effects observed after only 3 months of exposure, suggesting that modifications to the neural code continue throughout a lifetime of exposure to noise.


2013 ◽  
Vol 74 (7) ◽  
pp. 921-925 ◽  
Author(s):  
Ka-Yee Ho ◽  
Wing-Tat Hung ◽  
Chung-Fai Ng ◽  
Yat-Ken Lam ◽  
Randolph Leung ◽  
...  

1981 ◽  
Vol 91 (1) ◽  
pp. 57-71 ◽  
Author(s):  
R. ERIC LOMBARD ◽  
RICHARD R. FAY ◽  
YEHUDAH L. WERNER

Comparable auditory sound pressure level (SPL) and sound intensity level(SIL) threshold curves were determined in air and under water in Ranacatesbeiana. Threshold curves were determined using chronic metal electrodeimplants which detected multi-unit responses of the torus semicircularis toincident sound. In terms of SPL, hearing thresholds in water and air aresimilar below 0.2 kHz. Above 0.2 kHz, the sensitivity under water falls of fat about 16 dB/octave to reach an average loss of about 30 dB above 0.4 kHz. In terms of SIL, the organism is about 30 dB more sensitive under water than in air below 0.2 kHz and equally sensitive in air and water above 0.4 kHz.The relative merits of the two measures are discussed and an attempt is made to relate the results to morphology of the middle and inner ears. This report is the first to compare aerial and underwater hearing abilities in any organism using electrode implants.


1965 ◽  
Vol 20 (2) ◽  
pp. 301-307 ◽  
Author(s):  
G. A. Cavagna ◽  
R. Margaria

The mechanical work done by the chest in phonation has been measured together with the sound intensity level. The regulation of the sound intensity is done by regulating the intrapulmonary pressure. This is achieved at high intensity levels through the activity of the respiratory muscles that, together with the elastic recoil of the chest, sustain the work of phonation. At sound intensities below a critical level an additional mechanism for changing the intensity is given by a fine regulation of the opening of the glottis, thus allowing more air to escape without contributing to sound production. The contribution of the respiratory muscles, of the chest elasticity, and of the opening of the glottis to phonation at different intensity levels depend on the degree of inflation of the chest. The efficiency of phonation, as of sound production in mechanical models, seems to increase with increasing intensity and pitch. voice production; work done by chest during phonation; mechanical models of glottis generator; subglottic pressure as a function of sound level; air flow through glottis during phonation; efficiency changes of sound production; variation of sound intensity by regulating opening of glottis; variations of the area of glottis depending on extent of elastic recoil of chest Submitted on February 10, 1964


Sign in / Sign up

Export Citation Format

Share Document