488 SNAIL TRANSFECTION INDUCES EPITHELIAL-MESENCHYMAL TRANSITION WITH PROPERTIES OF CANCER STEM-LIKE CELL IN ESOPHAGEAL SQUAMOUS CELL CANCER

2021 ◽  
Vol 34 (Supplement_1) ◽  
Author(s):  
Ching Tzao ◽  
Meng-Hsun Wu ◽  
Ben-Hen Chen

Abstract   Cancer stem-like cell (CSC) is an important player in tumorigenesis and tumor progression. Snail has been demonstrated as a key driver for epithelial-mesenchymal transition (EMT) that is closely linked with generation of stem-like cell in human cancer. We aim to investigate if Snail transfection induces EMT and properties of stem-like cell in esophageal squamous cell carcinoma (ESCC) cell lines. Methods A lentivirus system was used to transfect human Snail via a plasmid pLV-EF1a-hSnail-Hyg into KYSE-170 and KYSE-510 ESCC cell lines. Immunoblotting was used to determine expression of EMT associated markers including Vimentin, E-cadherin, Fibronectin and N-cadherin. Assays for cell migration and invasion were conducted in Snail-transfected cells and its vector control. Cytotoxicity (MTT) and cell proliferation assay was used to determine cell growth. Sphere formation assay and flow cytometry (FCM) were employed to characterize stem cell properties while examining expression of stemness genes by using real-time polymerase chain reaction (PCR). Results After Snail transfection, mesenchymal markers, Vimentin, N-cadherin increased, whereas epithelial marker E-cadherin decreased. Snail-transfected. ESCC cells presented a significant increase in RNA expression of stemness genes such as Nanog, Oct4, ABCG2 and Sox2 with an induction in sphere formation. Moreover, ability of cell migration and invasion increased after Snail-transfection in ESCC with increased chemoresistance to cisplatin, taxol, and 5-Fluorouracil(5-FU) and an increase in radioresistance as well. Conclusion Our results demonstrated that Snail transfection induced EMT with properties of CSC in ESCC cell lines.

2011 ◽  
Vol 440 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Xiqiang Liu ◽  
Cheng Wang ◽  
Zujian Chen ◽  
Yi Jin ◽  
Yun Wang ◽  
...  

Down-regulation of miR-138 (microRNA-138) has been frequently observed in various cancers, including HNSCC (head and neck squamous cell carcinoma). Our previous studies suggest that down-regulation of miR-138 is associated with mesenchymal-like cell morphology and enhanced cell migration and invasion. In the present study, we demonstrated that these miR-138-induced changes were accompanied by marked reduction in E-cad (E-cadherin) expression and enhanced Vim (vimentin) expression, characteristics of EMT (epithelial–mesenchymal transition). On the basis of a combined experimental and bioinformatics analysis, we identified a number of miR-138 target genes that are associated with EMT, including VIM, ZEB2 (zinc finger E-box-binding homeobox 2) and EZH2 (enhancer of zeste homologue 2). Direct targeting of miR-138 to specific sequences located in the mRNAs of the VIM, ZEB2 and EZH2 genes was confirmed using luciferase reporter gene assays. Our functional analyses (knock-in and knock-down) demonstrated that miR-138 regulates the EMT via three distinct pathways: (i) direct targeting of VIM mRNA and controlling the expression of VIM at a post-transcriptional level, (ii) targeting the transcriptional repressors (ZEB2) which in turn regulating the transcription activity of the E-cad gene, and (iii) targeting the epigenetic regulator EZH2 which in turn modulates its gene silencing effects on the downstream genes including E-cad. These results, together with our previously observed miR-138 effects on cell migration and invasion through targeting RhoC (Rho-related GTP-binding protein C) and ROCK2 (Rho-associated, coiled-coil-containing protein kinase 2) concurrently, suggest that miR-138 is a multi-functional molecular regulator and plays major roles in EMT and in HNSCC progression.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Meng Ren ◽  
Yan Gao ◽  
Qi Chen ◽  
Hongyu Zhao ◽  
Xiaoting Zhao ◽  
...  

Background. Keratin 23 (KRT23) is a new member of the KRT gene family and known to be involved in the development and migration of various types of tumors. However, the role of KRT23 in ovarian cancer (OC) remains unclear. This study is aimed at investigating the function of KRT23 in OC. Methods. The expression of KRT23 in normal ovarian and OC tissues was determined using the Oncomine database and immunohistochemical staining. Reverse transcription quantitative polymerase chain reaction assay was used to analyze the expression of KRT23 in normal ovarian epithelial cell lines and OC cell lines. Small interfering RNA (siRNA), wound healing assay, and transwell assay were conducted to detect the effects of KRT23 on OC cell migration and invasion. Further mechanistic studies were verified by the Gene Expression Profiling Interactive Analysis platform, Western blotting, and immunofluorescence staining. Results. KRT23 was highly expressed in OC tissues and cell lines. High KRT23 expression could regulate OC cell migration and invasion, and the reduction of KRT23 by siRNA inhibited the migration and invasion of OC cells in vitro. Furthermore, KRT23 mediated epithelial-mesenchymal transition (EMT) by regulating p-Smad2/3 levels in the TGF-β/Smad signaling pathway. Conclusions. These results demonstrate that KRT23 plays an important role in OC migration via EMT by regulating the TGF-β/Smad signaling pathway.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Haoran Kong ◽  
Wenhui Yu ◽  
Zhuning Chen ◽  
Haonan Li ◽  
Guiwen Ye ◽  
...  

Abstract Background Osteosarcoma (OS) patients with lung metastasis have poor prognoses, and effective therapeutic strategies for delaying or inhibiting the spread of lung metastasis from the primary OS site are lacking. Hence, it is critical to elucidate the underlying mechanisms of OS metastasis and to identify additional new effective treatment strategies for patients. Methods Differential expression and functional analyses were performed to identify key genes and relevant signaling pathways associated with OS lung metastasis. The expression of CCR9 in OS cell lines and tissues was measured by RT-qPCR, western blotting and immunohistochemistry. Cell migration and invasion were assessed by wound healing and Transwell Matrigel invasion assays, respectively. The regulatory relationship between CCR9 and the Wnt/β-catenin signaling pathway was further evaluated by rescue experiments. Results The expression of CCR9 was elevated in OS cell lines and patients with lung metastasis. CCR9 promoted MG63 and HOS cell migration and invasion by activating the Wnt/β-catenin signaling pathway. Furthermore, knockdown of CCR9 repressed epithelial–mesenchymal transition (EMT) by downregulating mesenchymal markers (N-cadherin and Vimentin) and EMT-associated transcription factors (twist and snail) and upregulating an epithelial marker (E-cadherin). Conclusions Our findings suggest that CCR9 promotes EMT by activating Wnt/β-catenin pathways to promote OS metastasis. CCR9 may be a promising therapeutic target to inhibit lung metastasis and serve as a novel prognostic marker for OS.


2020 ◽  
Vol 19 ◽  
pp. 153303382094748
Author(s):  
Xinzhou Deng ◽  
Chunli Chen ◽  
Feng Wu ◽  
Li Qiu ◽  
Qing Ke ◽  
...  

Radiotherapy has been reported to cause cancer metastasis. Thus, a new strategy for radiotherapy must be developed to avoid this side effect. A549 cells were exposed to radiation to induce an epithelial-mesenchymal transition (EMT) cell model. Real-time PCR and western blotting were used to detect mRNA and protein expression levels, and Transwell invasion and wound healing assays were used to detect cell migration and invasion. ELISA was used to detect soluble E-cadherin (sE-cad) secretion. siRNA was used to silence MMP9 expression. The results show that A549R cells exhibited an EMT phenotype with increased E-cadherin, N-cadherin, Snail, Slug, vimentin and Twist expression and decreased pan-keratin expression. sE-cad levels were increased in A549R cells and in the serum of NSCLC patients with distant metastasis. Exogenous sE-cad treatment and sE-cad overexpression promoted A549R and A549 cell migration and invasion. In contrast, blocking sE-cad attenuated A549 cell migration and invasion. Curcumin inhibited sE-cad expression and reversed EMT induced by radiation. Furthermore, curcumin suppressed sE-cad-enhanced A549 and A549R cell migration and invasion. Curcumin inhibited MMP9 expression, and silencing MMP9 suppressed sE-cad expression. Taken together, we found a nonclassic EMT phenomenon induced by radiation. Curcumin inhibits NSCLC migration and invasion by suppressing radiation-induced EMT and sE-cad expression by decreasing MMP9 expression.


2021 ◽  
pp. 096032712110061
Author(s):  
D Cao ◽  
L Chu ◽  
Z Xu ◽  
J Gong ◽  
R Deng ◽  
...  

Background: Visfatin acts as an oncogenic factor in numerous tumors through a variety of cellular processes. Visfatin has been revealed to promote cell migration and invasion in gastric cancer (GC). Snai1 is a well-known regulator of EMT process in cancers. However, the relationship between visfatin and snai1 in GC remains unclear. The current study aimed to explore the role of visfatin in GC. Methods: The RT-qPCR and western blot analysis were used to measure RNA and protein levels, respectively. The cell migration and invasion were tested by Trans-well assays and western blot analysis. Results: Visfatin showed upregulation in GC cells. Additionally, Visfatin with increasing concentration facilitated epithelial-mesenchymal transition (EMT) process by increasing E-cadherin and reducing N-cadherin and Vimentin protein levels in GC cells. Moreover, endogenous overexpression and knockdown of visfatin promoted and inhibited migratory and invasive abilities of GC cells, respectively. Then, we found that snai1 protein level was positively regulated by visfatin in GC cells. In addition, visfatin activated the NF-κB signaling to modulate snai1 protein expression. Furthermore, the silencing of snai1 counteracted the promotive impact of visfatin on cell migration, invasion and EMT process in GC. Conclusion: Visfatin facilitates cell migration, invasion and EMT process by targeting snai1 via the NF-κB signaling, which provides a potential insight for the treatment of GC.


Sign in / Sign up

Export Citation Format

Share Document