scholarly journals OP29 Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome

2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S028-S029
Author(s):  
L Bolte ◽  
A Vich Vila ◽  
F Imhann ◽  
V Collij ◽  
V Peters ◽  
...  

Abstract Background The gut microbiome directly affects the balance of pro-inflammatory and anti-inflammatory responses in the gut. As microbes thrive on dietary substrates, the question arises whether we can nourish an anti-inflammatory gut ecosystem. In this study, we investigated the relation between 173 dietary factors and the microbiome of 1425 individuals spanning four cohorts: Crohn’s disease, ulcerative colitis, irritable bowel syndrome and the general population. Methods Shotgun metagenomic sequencing was performed to profile gut microbial composition and function. Dietary intake was assessed through food frequency questionnaires. We performed unsupervised clustering to identify dietary patterns and microbial clusters. Next, linear models were conducted between dietary intake and microbial species and pathways, adding age, sex, caloric intake and sequencing read depth as covariates. Analyses were conducted per cohort, followed by a meta-analysis and heterogeneity estimation. Multiple testing correction was performed on the obtained p-values and a FDR <0.05 was defined as significance cut-off. Results We identified 38 associations between dietary patterns and microbial clusters. Moreover, 61 individual foods and nutrients were associated with 61 species and 249 metabolic pathways in the meta-analysis across healthy individuals and patients with IBS, Crohn’s disease and UC (FDR<0.05, heterogeneity p-value>0.05). Processed foods and animal-derived foods were consistently associated with higher abundances of Firmicutes, Ruminococcus species of the Blautia genus and endotoxin synthesis pathways. The opposite associations were found for clusters comprising fish, nuts, bread and legumes. Moreover, while total plant protein intake was associated with a higher Bifidobacterium abundance (FDR=0.048, coef=4.98), animal-derived protein showed a negative association (FDR=1.30x10-05, coef= -4.1). Lastly, we observed positive associations of fecal calprotectin with a fast food cluster (FDR=4.14x10-4, coef=0.24) and a cluster comprised of high-fat meat, potatoes and gravy (FDR=0.003, coef =0.22), while the opposite was seen for clusters of fish and nuts (FDR=0.038, coef= -0.1) and bread and legumes (FDR=0.005, coef= -2.48). Conclusion We identified dietary patterns that consistently correlate with groups of bacteria with shared functional roles in both, health and disease. Moreover, specific foods and nutrients were associated with species known to infer mucosal protection and anti-inflammatory effects. A decrease in these bacteria has already been associated with both IBS and IBD. We propose microbial mechanisms through which the diet affects inflammatory responses in the gut as a rationale for future intervention studies.

Gut ◽  
2021 ◽  
pp. gutjnl-2020-322670
Author(s):  
Laura A Bolte ◽  
Arnau Vich Vila ◽  
Floris Imhann ◽  
Valerie Collij ◽  
Ranko Gacesa ◽  
...  

ObjectiveThe microbiome directly affects the balance of pro-inflammatory and anti-inflammatory responses in the gut. As microbes thrive on dietary substrates, the question arises whether we can nourish an anti-inflammatory gut ecosystem. We aim to unravel interactions between diet, gut microbiota and their functional ability to induce intestinal inflammation.DesignWe investigated the relation between 173 dietary factors and the microbiome of 1425 individuals spanning four cohorts: Crohn’s disease, ulcerative colitis, irritable bowel syndrome and the general population. Shotgun metagenomic sequencing was performed to profile gut microbial composition and function. Dietary intake was assessed through food frequency questionnaires. We performed unsupervised clustering to identify dietary patterns and microbial clusters. Associations between diet and microbial features were explored per cohort, followed by a meta-analysis and heterogeneity estimation.ResultsWe identified 38 associations between dietary patterns and microbial clusters. Moreover, 61 individual foods and nutrients were associated with 61 species and 249 metabolic pathways in the meta-analysis across healthy individuals and patients with IBS, Crohn’s disease and UC (false discovery rate<0.05). Processed foods and animal-derived foods were consistently associated with higher abundances of Firmicutes, Ruminococcus species of the Blautia genus and endotoxin synthesis pathways. The opposite was found for plant foods and fish, which were positively associated with short-chain fatty acid-producing commensals and pathways of nutrient metabolism.ConclusionWe identified dietary patterns that consistently correlate with groups of bacteria with shared functional roles in both, health and disease. Moreover, specific foods and nutrients were associated with species known to infer mucosal protection and anti-inflammatory effects. We propose microbial mechanisms through which the diet affects inflammatory responses in the gut as a rationale for future intervention studies.


2020 ◽  
Vol 7 ◽  
Author(s):  
Jagadesan Sankarasubramanian ◽  
Rizwan Ahmad ◽  
Nagavardhini Avuthu ◽  
Amar B. Singh ◽  
Chittibabu Guda

Background: Inflammatory bowel disease (IBD) represents multifactorial chronic inflammatory conditions in the gastrointestinal tract and includes Crohn's disease (CD) and ulcerative colitis (UC). Despite similarities in pathobiology and disease symptoms, UC and CD represent distinct diseases and exhibit diverse therapeutic responses. While studies have now confirmed that IBD is associated with dramatic changes in the gut microbiota, specific changes in the gut microbiome and associated metabolic effects on the host due to CD and UC are less well-understood.Methods: To address this knowledge gap, we performed an extensive unbiased meta-analysis of the gut microbiome data from five different IBD patient cohorts from five different countries using QIIME2, DIAMOND, and STAMP bioinformatics platforms. In-silico profiling of the metabolic pathways and community metabolic modeling were carried out to identify disease-specific association of the metabolic fluxes and signaling pathways.Results: Our results demonstrated a highly conserved gut microbiota community between healthy individuals and IBD patients at higher phylogenetic levels. However, at or below the order level in the taxonomic rank, we found significant disease-specific alterations. Similarly, we identified differential enrichment of the metabolic pathways in CD and UC, which included enriched pathways related to amino acid and glycan biosynthesis and metabolism, in addition to other metabolic pathways.Conclusions: In conclusion, this study highlights the prospects of harnessing the gut microbiota to improve understanding of the etiology of CD and UC and to develop novel prognostic, and therapeutic approaches.


2019 ◽  
Vol 13 (11) ◽  
pp. 1439-1449 ◽  
Author(s):  
Marjolein A Y Klaassen ◽  
Floris Imhann ◽  
Valerie Collij ◽  
Jingyuan Fu ◽  
Cisca Wijmenga ◽  
...  

Abstract Background and Aims Crohn’s disease [CD] is a chronic inflammatory disorder of the gastrointestinal tract characterised by alternating periods of exacerbation and remission. We hypothesised that changes in the gut microbiome are associated with CD exacerbations, and therefore aimed to correlate multiple gut microbiome features to CD disease activity. Methods Faecal microbiome data generated using whole-genome metagenomic shotgun sequencing of 196 CD patients were of obtained from the 1000IBD cohort [one sample per patient]. Patient disease activity status at time of sampling was determined by re-assessing clinical records 3 years after faecal sample production. Faecal samples were designated as taken ‘in an exacerbation’ or ‘in remission’. Samples taken ‘in remission’ were further categorised as ‘before the next exacerbation’ or ‘after the last exacerbation’, based on the exacerbation closest in time to the faecal production date. CD activity was correlated with gut microbial composition and predicted functional pathways via logistic regressions using MaAsLin software. Results In total, 105 bacterial pathways were decreased during CD exacerbation (false-discovery rate [FDR] &lt;0.1) in comparison with the gut microbiome of patients both before and after an exacerbation. Most of these decreased pathways exert anti-inflammatory properties facilitating the biosynthesis and fermentation of various amino acids [tryptophan, methionine, and arginine], vitamins [riboflavin and thiamine], and short-chain fatty acids [SCFAs]. Conclusions CD exacerbations are associated with a decrease in microbial genes involved in the biosynthesis of the anti-inflammatory mediators riboflavin, thiamine, and folate, and SCFAs, suggesting that increasing the intestinal abundances of these mediators might provide new treatment opportunities. These results were generated using bioinformatic analyses of cross-sectional data and need to be replicated using time-series and wet lab experiments.


1995 ◽  
Vol 108 (4) ◽  
pp. 1056-1067 ◽  
Author(s):  
Anne M. Griffiths ◽  
Arne Ohlsson ◽  
Philip M. Sherman ◽  
Lloyd R. Sutherland

2021 ◽  
Author(s):  
J. J. Teh ◽  
E. M. Berendsen ◽  
E. C. Hoedt ◽  
S. Kang ◽  
J. Zhang ◽  
...  

AbstractThe mucosa-associated microbiota is widely recognized as a potential trigger for Crohn’s disease pathophysiology but remains largely uncharacterised beyond its taxonomic composition. Unlike stool microbiota, the functional characterisation of these communities using current DNA/RNA sequencing approaches remains constrained by the relatively small microbial density on tissue, and the overwhelming amount of human DNA recovered during sample preparation. Here, we have used a novel ex vivo approach that combines microbe culture from anaerobically preserved tissue with metagenome sequencing (MC-MGS) to reveal patient-specific and strain-level differences among these communities in post-operative Crohn’s disease patients. The 16 S rRNA gene amplicon profiles showed these cultures provide a representative and holistic representation of the mucosa-associated microbiota, and MC-MGS produced both high quality metagenome-assembled genomes of recovered novel bacterial lineages. The MC-MGS approach also produced a strain-level resolution of key Enterobacteriacea and their associated virulence factors and revealed that urease activity underpins a key and diverse metabolic guild in these communities, which was confirmed by culture-based studies with axenic cultures. Collectively, these findings using MC-MGS show that the Crohn’s disease mucosa-associated microbiota possesses taxonomic and functional attributes that are highly individualistic, borne at least in part by novel bacterial lineages not readily isolated or characterised from stool samples using current sequencing approaches.


Sign in / Sign up

Export Citation Format

Share Document