Fruit Consumption is Associated with Alterations in Microbial Composition and Lower Rates of Pouchitis

2019 ◽  
Vol 13 (10) ◽  
pp. 1265-1272 ◽  
Author(s):  
L Godny ◽  
N Maharshak ◽  
L Reshef ◽  
I Goren ◽  
L Yahav ◽  
...  

Abstract Background Patients with ulcerative colitis [UC] who undergo proctocolectomy with an ileal pouch–anal anastomosis commonly develop pouch inflammation [pouchitis]. Pouchitis develops in a previously normal small intestine and may involve environmental factors. We explored whether diet and microbiota alterations contributed to the pathogenesis of pouchitis. Methods Patients were recruited and prospectively followed at a comprehensive pouch clinic. Pouch behaviour was clinically defined as a normal pouch [NP] or pouchitis. Patients completed Food Frequency Questionnaires [FFQs]. Faecal samples were analysed for microbial composition [16S rRNA gene pyrosequencing]. Results Nutritional evaluation was performed in 172 patients [59% females], and of these, faecal microbial analysis was performed in 75 patients (microbiota cohort: NP [n = 22], pouchitis [n = 53]). Of the entire cohort, a subgroup of 39 [22.6%] patients had NP at recruitment [NP cohort]. Of these, 5 [12.8%] developed pouchitis within a year. Patients at the lowest tertile of fruit consumption [<1.45 servings/day] had higher rates of pouchitis compared with those with higher consumption [30.8% vs 3.8%, log rank, p = 0.03]. Fruit consumption was correlated with microbial diversity [r = 0.35, p = 0.002] and with the abundance of several microbial genera, including Faecalibacterium [r = 0.29, p = 0.01], Lachnospira [r = 0.38, p = 0.001], and a previously uncharacterized genus from the Ruminococcaceae family [r = 0.25, p = 0.05]. Reduction in fruit consumption over time was associated with disease recurrence and with reduced microbial diversity [Δ = –0.8 ± 0.3, p = 0.008]. Conclusions Fruit consumption is associated with modification of microbial composition, and lower consumption was correlated with the development of pouchitis. Thus, fruit consumption may protect against intestinal inflammation via alteration of microbial composition.

2020 ◽  
Vol 13 (11) ◽  
pp. 346
Author(s):  
Anita Bálint ◽  
Klaudia Farkas ◽  
Orsolya Méhi ◽  
Bálint Kintses ◽  
Bálint Márk Vásárhelyi ◽  
...  

Gut microbial composition alters in some special situations, such as in ulcerative colits (UC) after total proctocolectomy and ileal pouch-anal anastomosis (IPAA) surgery. The aim of our study was to determine the composition of the intestinal microbiome in UC patients after IPAA surgery, compared with UC patients, familial adenomatous polyposis (FAP) patients after IPAA surgery and healthy controls. Clinical data of patients, blood and faecal samples were collected. Faecal microbiota structure was determined by sequencing the V4 hypervariable region of the 16S rRNA gene. Overall, 56 patients were enrolled. Compared to the Healthy group, both the Pouch active and UC active groups had higher Enterobacteriaceae, Enterococcaceae and Pasteurellaceae abundance. The Pouch and UC groups showed distinct separation based on their alpha and beta bacterial diversities. The UC group had higher Prevotellaceae, Rikenellaceae, Ruminococcaceae abundance compared to the Pouch active group. Pouch and FAP participants showed similar bacterial community composition. There was no significant difference in the bacterial abundance between the active and inactive subgroups of the Pouch or UC groups. Gut microbiome and anatomical status together construct a functional unit that has influence on diversity, in addition to intestinal inflammation that is a part of the pathomechanism in UC.


Soil Systems ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
Anithadevi Kenday Sivaram ◽  
Logeshwaran Panneerselvan ◽  
Kannappar Mukunthan ◽  
Mallavarapu Megharaj

Pyroligneous acid (PA) is often used in agriculture as a plant growth and yield enhancer. However, the influence of PA application on soil microorganisms is not often studied. Therefore, in this study, we investigated the effect of PA (0.01–5% w/w in soil) on the microbial diversity in two different soils. At the end of eight weeks of incubation, soil microbial community dynamics were determined by Illumina-MiSeq sequencing of 16S rRNA gene amplicons. The microbial composition differed between the lower (0.01% and 0.1%) and the higher (1% and 5%) concentration in both PA spiked soils. The lower concentration of PA resulted in higher microbial diversity and dehydrogenase activity (DHA) compared to the un-spiked control and the soil spiked with high PA concentrations. Interestingly, PA-induced plant growth-promoting bacterial (PGPB) genera include Bradyrhizobium, Azospirillum, Pseudomonas, Mesorhizobium, Rhizobium, Herbaspiriluum, Acetobacter, Beijerinckia, and Nitrosomonas at lower concentrations. Additionally, the PICRUSt functional analysis revealed the predominance of metabolism as the functional module’s primary component in both soils spiked with 0.01% and 0.1% PA. Overall, the results elucidated that PA application in soil at lower concentrations promoted soil DHA and microbial enrichment, particularly the PGPB genera, and thus have great implications for improving soil health.


Archaea ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yong Su ◽  
Gaorui Bian ◽  
Zhigang Zhu ◽  
Hauke Smidt ◽  
Weiyun Zhu

Gut methanogenic archaea of monogastric animals are considered to be related to energy metabolism and adipose deposition of the host; however, information on their development in young piglets is limited. Thus, to investigate early methanogenic colonisation in the faeces of Meishan and Yorkshire piglets, faecal samples were collected from piglets at 1, 3, 7, and 14 days after birth and used to analyse the methanogenic community with 16S rRNA gene pyrosequencing. Results showed that the diversity of the methanogenic community in the faeces of neonatal piglets decreased from one to 14 days of age, as the total methanogen populations increased. The age of piglets, but not the breed, significantly affected the diversity of the methanogenic community which was dominated by the genusMethanobrevibacter. From the ages of one to 14 days, the abundance ofM. smithii-related operational taxonomic units (OTUs) increased significantly, while the abundances ofM. thaueri- andM. millerae-related OTUs decreased significantly. The substitution ofM. smithiiforM. thaueri/M. milleraewas faster in Yorkshire piglets than in Meishan piglets. These results suggest that the early establishment of microbiota in neonatal piglets is accompanied by dramatic changes in the methanogenic community, and that the changes vary among pigs of different genotypes.


2016 ◽  
Vol 62 (6) ◽  
pp. 538-541 ◽  
Author(s):  
Marija Kaevska ◽  
Petra Videnska ◽  
Karel Sedlar ◽  
Iva Bartejsova ◽  
Alena Kralova ◽  
...  

The aim of this study was to determine possible differences in the faecal microbiota of dairy cows infected with Mycobacterium avium subsp. paratuberculosis (Johne’s disease) in comparison with noninfected cows from the same herds. Faecal samples from cows in 4 herds were tested for M. avium subsp. paratuberculosis by real-time PCR, and faecal bacterial populations were analysed by 454 pyrosequencing of the 16S rRNA gene. The most notable differences between shedding and nonshedding cows were an increase in the genus Psychrobacter and a decrease in the genera Oscillospira, Ruminococcus, and Bifidobacterium in cows infected with M. avium subsp. paratuberculosis. The present study is the first to report the faecal microbial composition in dairy cows infected with M. avium subsp. paratuberculosis.


2021 ◽  
Author(s):  
Katie Bull ◽  
Gareth Davies ◽  
Timothy Patrick Jenkins ◽  
Laura Elizabeth Peachey

Abstract BackgroundChanges to the gut microbiota are associated with an increased incidence of disease in many species. This is particularly important during the process of domestication, where captive animals commonly suffer from gastrointestinal (GI) pathology. Horses are a prime example of a species which suffers from a high incidence of (often life-threatening) GI diseases in domesticated environments. We aimed to indentify the gut microbial changes which occur due to domestication in horses by profiling the faecal microbiota of adult female Exmoor ponies under three management conditions, representing increasing levels of domestication.MethodsFaecal samples were collected from 29 adult female Exmoor ponies in the South West of the UK; ponies were categorised as Feral (n=10), Semi-Feral (n=10) and Domesticated (n=9), based on their management conditions; thus controlling for age, gender and random effects between groups. Diet and medication were recorded and faecal samples taken to assess parasite infection. Faecal microbial composition was profiled via high-throughput sequencing of the bacterial 16S rRNA gene.ResultsDownstream biostatistical analysis indicated profound step-wise changes in global microbial community structure in the transition from Feral to Semi-Feral to Domesticated groups. A relatively high abundance of members of the phylum Proteobacteria and Tenericutes were associated with the Domesticated group; and higher levels of Methanobacteria were seen in the Feral group. The Semi-Feral group frequently had intermediate levels of these taxa; however, they also exhibited the greatest ‘within group’ variation in bacterial diversity and parasites burdens. Functional predictions revealed increased amino acid and lipid metabolism in the Domesticated group and increased energy metabolism in the Feral group; supporting a hypothesis that differences in diet was the key driver of gut microbial composition. ConclusionsIf assumed the Feral population has a more natural gut microbial phenotype, akin to that with which horses have evolved, these data can potentially be used to provide microbial signitures of balanced gut homeostasis in horses; which, in turn, will aid prevention of GI disease in domesticated horses.


2016 ◽  
Vol 150 (4) ◽  
pp. S21
Author(s):  
Lihi Godny ◽  
Nitsan Maharshak ◽  
Lior Yahav ◽  
Naomi Fliss Isakov ◽  
Uri Gophna ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e53350 ◽  
Author(s):  
Weiguo Hou ◽  
Shang Wang ◽  
Hailiang Dong ◽  
Hongchen Jiang ◽  
Brandon R. Briggs ◽  
...  

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Fang Dong ◽  
Fangfei Xiao ◽  
Xiaolu Li ◽  
Youran Li ◽  
Xufei Wang ◽  
...  

Abstract Background Compelling evidences demonstrated that gut microbiota dysbiosis plays a critical role in the pathogenesis of inflammatory bowel diseases (IBD). Therapies for targeting the microbiota may provide alternative options for the treatment of IBD, such as probiotics. Here, we aimed to investigate the protective effect of a probiotic strain, Pediococcus pentosaceus (P. pentosaceus) CECT 8330, on dextran sulfate sodium (DSS)-induced colitis in mice. Methods C57BL/6 mice were administered phosphate-buffered saline (PBS) or P. pentosaceus CECT 8330 (5 × 108 CFU/day) once daily by gavage for 5 days prior to or 2 days after colitis induction by DSS. Weight, fecal conditions, colon length and histopathological changes were examined. ELISA and flow cytometry were applied to determine the cytokines and regulatory T cells (Treg) ratio. Western blot was used to examine the tight junction proteins (TJP) in colonic tissues. Fecal short-chain fatty acids (SCFAs) levels and microbiota composition were analyzed by targeted metabolomics and 16S rRNA gene sequencing, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of orthologous groups of proteins (COG) pathway analysis were used to predict the microbial functional profiles. Results P. pentosaceus CECT 8330 treatment protected DSS-induced colitis in mice as evidenced by reducing the weight loss, disease activity index (DAI) score, histological damage, and colon length shortening. P. pentosaceus CECT 8330 decreased the serum levels of proinflammatory cytokines (TNF-α, IL-1β, and IL-6), and increased level of IL-10 in DSS treated mice. P. pentosaceus CECT 8330 upregulated the expression of ZO-1, Occludin and the ratio of Treg cells in colon tissue. P. pentosaceus CECT 8330 increased the fecal SCFAs level and relative abundances of several protective bacteria genera, including norank_f_Muribaculaceae, Lactobacillus, Bifidobacterium, and Dubosiella. Furthermore, the increased abundances of bacteria genera were positively correlated with IL-10 and SCFAs levels, and negatively associated with IL-6, IL-1β, and TNF-α, respectively. The KEGG and COG pathway analysis revealed that P. pentosaceus CECT 8330 could partially recover the metabolic pathways altered by DSS. Conclusions P. pentosaceus CECT 8330 administration protects the DSS-induced colitis and modulates the gut microbial composition and function, immunological profiles, and the gut barrier function. Therefore, P. pentosaceus CECT 8330 may serve as a promising probiotic to ameliorate intestinal inflammation.


Sign in / Sign up

Export Citation Format

Share Document