scholarly journals Functional Anatomical Changes in Ulcerative Colitis Patients Determine Their Gut Microbiota Composition and Consequently the Possible Treatment Outcome

2020 ◽  
Vol 13 (11) ◽  
pp. 346
Author(s):  
Anita Bálint ◽  
Klaudia Farkas ◽  
Orsolya Méhi ◽  
Bálint Kintses ◽  
Bálint Márk Vásárhelyi ◽  
...  

Gut microbial composition alters in some special situations, such as in ulcerative colits (UC) after total proctocolectomy and ileal pouch-anal anastomosis (IPAA) surgery. The aim of our study was to determine the composition of the intestinal microbiome in UC patients after IPAA surgery, compared with UC patients, familial adenomatous polyposis (FAP) patients after IPAA surgery and healthy controls. Clinical data of patients, blood and faecal samples were collected. Faecal microbiota structure was determined by sequencing the V4 hypervariable region of the 16S rRNA gene. Overall, 56 patients were enrolled. Compared to the Healthy group, both the Pouch active and UC active groups had higher Enterobacteriaceae, Enterococcaceae and Pasteurellaceae abundance. The Pouch and UC groups showed distinct separation based on their alpha and beta bacterial diversities. The UC group had higher Prevotellaceae, Rikenellaceae, Ruminococcaceae abundance compared to the Pouch active group. Pouch and FAP participants showed similar bacterial community composition. There was no significant difference in the bacterial abundance between the active and inactive subgroups of the Pouch or UC groups. Gut microbiome and anatomical status together construct a functional unit that has influence on diversity, in addition to intestinal inflammation that is a part of the pathomechanism in UC.

2019 ◽  
Vol 13 (10) ◽  
pp. 1265-1272 ◽  
Author(s):  
L Godny ◽  
N Maharshak ◽  
L Reshef ◽  
I Goren ◽  
L Yahav ◽  
...  

Abstract Background Patients with ulcerative colitis [UC] who undergo proctocolectomy with an ileal pouch–anal anastomosis commonly develop pouch inflammation [pouchitis]. Pouchitis develops in a previously normal small intestine and may involve environmental factors. We explored whether diet and microbiota alterations contributed to the pathogenesis of pouchitis. Methods Patients were recruited and prospectively followed at a comprehensive pouch clinic. Pouch behaviour was clinically defined as a normal pouch [NP] or pouchitis. Patients completed Food Frequency Questionnaires [FFQs]. Faecal samples were analysed for microbial composition [16S rRNA gene pyrosequencing]. Results Nutritional evaluation was performed in 172 patients [59% females], and of these, faecal microbial analysis was performed in 75 patients (microbiota cohort: NP [n = 22], pouchitis [n = 53]). Of the entire cohort, a subgroup of 39 [22.6%] patients had NP at recruitment [NP cohort]. Of these, 5 [12.8%] developed pouchitis within a year. Patients at the lowest tertile of fruit consumption [<1.45 servings/day] had higher rates of pouchitis compared with those with higher consumption [30.8% vs 3.8%, log rank, p = 0.03]. Fruit consumption was correlated with microbial diversity [r = 0.35, p = 0.002] and with the abundance of several microbial genera, including Faecalibacterium [r = 0.29, p = 0.01], Lachnospira [r = 0.38, p = 0.001], and a previously uncharacterized genus from the Ruminococcaceae family [r = 0.25, p = 0.05]. Reduction in fruit consumption over time was associated with disease recurrence and with reduced microbial diversity [Δ = –0.8 ± 0.3, p = 0.008]. Conclusions Fruit consumption is associated with modification of microbial composition, and lower consumption was correlated with the development of pouchitis. Thus, fruit consumption may protect against intestinal inflammation via alteration of microbial composition.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 254
Author(s):  
Ying Wang ◽  
Jianqing Zhu ◽  
Jie Fang ◽  
Li Shen ◽  
Shuojia Ma ◽  
...  

We characterized the gut microbial composition and relative abundance of gut bacteria in the larvae and adults of Pieris canidia by 16S rRNA gene sequencing. The gut microbiota structure was similar across the life stages and sexes. The comparative functional analysis on P. canidia bacterial communities with PICRUSt showed the enrichment of several pathways including those for energy metabolism, immune system, digestive system, xenobiotics biodegradation, transport, cell growth and death. The parameters often used as a proxy of insect fitness (development time, pupation rate, emergence rate, adult survival rate and weight of 5th instars larvae) showed a significant difference between treatment group and untreated group and point to potential fitness advantages with the gut microbiomes in P. canidia. These data provide an overall view of the bacterial community across the life stages and sexes in P. canidia.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lito E. Papanicolas ◽  
Sarah K. Sims ◽  
Steven L. Taylor ◽  
Sophie J. Miller ◽  
Christos S. Karapetis ◽  
...  

Abstract Background The gut microbiota influences many aspects of host physiology, including immune regulation, and is predictive of outcomes in cancer patients. However, whether conventional myelosuppressive chemotherapy affects the gut microbiota in humans with non-haematological malignancy, independent of antibiotic exposure, is unknown. Methods Faecal samples from 19 participants with non-haematological malignancy, who were receiving conventional chemotherapy regimens but not antibiotics, were examined prior to chemotherapy, 7–12 days after chemotherapy, and at the end of the first cycle of treatment. Gut microbiota diversity and composition was determined by 16S rRNA gene amplicon sequencing. Results Compared to pre-chemotherapy samples, samples collected 7–12 days following chemotherapy exhibited increased richness (mean 120 observed species ± SD 38 vs 134 ± 40; p = 0.007) and diversity (Shannon diversity: mean 6.4 ± 0.43 vs 6.6 ± 0.41; p = 0.02). Composition was significantly altered, with a significant decrease in the relative abundance of gram-positive bacteria in the phylum Firmicutes (pre-chemotherapy median relative abundance [IQR] 0.78 [0.11] vs 0.75 [0.11]; p = 0.003), and an increase in the relative abundance of gram-negative bacteria (Bacteroidetes: median [IQR] 0.16 [0.13] vs 0.21 [0.13]; p = 0.01 and Proteobacteria: 0.015 [0.018] vs 0.03 [0.03]; p = 0.02). Differences in microbiota characteristics from baseline were no longer significant at the end of the chemotherapy cycle. Conclusions Conventional chemotherapy results in significant changes in gut microbiota characteristics during the period of predicted myelosuppression post-chemotherapy. Further study is indicated to link microbiome changes during chemotherapy to clinical outcomes.


Author(s):  
Shiju Xiao ◽  
Guangzhong Zhang ◽  
Chunyan Jiang ◽  
Xin Liu ◽  
Xiaoxu Wang ◽  
...  

BackgroundIncreasing evidence has shown that alterations in the intestinal microbiota play an important role in the pathogenesis of psoriasis. The existing relevant studies focus on 16S rRNA gene sequencing, but in-depth research on gene functions and comprehensive identification of microbiota is lacking.ObjectivesTo comprehensively identify characteristic gut microbial compositions, genetic functions and relative metabolites of patients with psoriasis and to reveal the potential pathogenesis of psoriasis.MethodsDNA was extracted from the faecal microbiota of 30 psoriatic patients and 15 healthy subjects, and metagenomics sequencing and bioinformatic analyses were performed. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database, cluster of orthologous groups (COG) annotations, and metabolic analyses were used to indicate relative target genes and pathways to reveal the pathogenesis of psoriasis.ResultsCompared with healthy individuals, the gut microbiota of psoriasis patients displayed an alteration in microbial taxa distribution, but no significant difference in microbial diversity. A distinct gut microbial composition in patients with psoriasis was observed, with an increased abundance of the phyla Firmicutes, Actinobacteria and Verrucomicrobia and genera Faecalibacterium, Bacteroides, Bifidobacterium, Megamonas and Roseburia and a decreased abundance of the phyla Bacteroidetes, Euryarchaeota and Proteobacteria and genera Prevotella, Alistipes, and Eubacterium. A total of 134 COGs were predicted with functional analysis, and 15 KEGG pathways, including lipopolysaccharide (LPS) biosynthesis, WNT signaling, apoptosis, bacterial secretion system, and phosphotransferase system, were significantly enriched in psoriasis patients. Five metabolites, hydrogen sulfide (H2S), isovalerate, isobutyrate, hyaluronan and hemicellulose, were significantly dysregulated in the psoriatic cohort. The dysbiosis of gut microbiota, enriched pathways and dysregulated metabolites are relevant to immune and inflammatory response, apoptosis, the vascular endothelial growth factor (VEGF) signaling pathway, gut-brain axis and brain-skin axis that play important roles in the pathogenesis of psoriasis.ConclusionsA clear dysbiosis was displayed in the gut microbiota profile, genetic functions and relative metabolites of psoriasis patients. This study is beneficial for further understanding the inflammatory pathogenesis of psoriasis and could be used to develop microbiome-based predictions and therapeutic approaches.


2020 ◽  
Vol 8 (9) ◽  
pp. 1363
Author(s):  
Julia Hankel ◽  
Amr Abd El-Wahab ◽  
Richard Grone ◽  
Birgit Keller ◽  
Eric Galvez ◽  
...  

Anthropomorphism of dogs has affected feeding and the choice of components present in diets for dogs. Conflicting trends are present: raw or vegetarian appear more prevalent. Animal-derived proteins seem to have unfavourable impacts on intestinal microflora by decreasing the presence of Bacteroidetes. This preliminary study evaluates whether effects of diets with animal proteins on intestinal microbiota can be compensated by the addition of certain carbohydrates to dog diet. Eight female beagles were included in a cross-over study and fed a vegetarian diet or the same diet supplemented with feather meal (2.7%) and either 20% of cornmeal, fermented or non-fermented rye (moisture content of the diets about 42%). A 16S rRNA gene amplification was performed within the hypervariable region V4 on faecal samples and sequenced with the Illumina MiSeq platform. The Firmicutes/Bacteroidetes ratio tended to shift to the advantage of Firmicutes when feather meal and cornmeal were added (Firmicutes/Bacteroidetes ratio of 5.12 compared to 2.47 when offered the vegetarian diet) and tended to switch back to the advantage of Bacteroidetes if rye: fermented (2.17) or not (1.03) was added. The addition of rye might have the potential to compensate possible unfavourable effects of diets with animal proteins on intestinal microbiota of dogs.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1779
Author(s):  
Marta Selma-Royo ◽  
Izaskun García-Mantrana ◽  
Marta Calatayud ◽  
Anna Parra-Llorca ◽  
Cecilia Martínez-Costa ◽  
...  

The importance of the maternal microbiota in terms of the initial bacterial seeding has previously been highlighted; however, little is currently known about the perinatal factors that could affect it. The aim of this study was to evaluate the effects of various delivery-related factors on the intestinal microbiome at delivery time and on post-partum weight retention. Data were collected from mothers (n = 167) during the first four months post-partum. A subset of 100 mothers were selected for the determination of the salivary cortisol concentration and microbiome composition at birth by 16S rRNA gene sequencing. The maternal microbiota was classified into two distinct clusters with significant differences in microbial composition and diversity. Maternal microbiota was also significantly influenced by the mode of delivery. Moreover, the salivary cortisol concentration was associated with some maternal microbiota genera and it was significantly higher in the vaginal delivery group (p = 0.003). The vaginal delivery group exhibited lower post-partum weight retention than the C-section (CS) mothers at four months post-partum (p < 0.001). These results support the hypothesis that the mode of delivery as well as the codominant hormonal changes could influence the maternal microbiota and possibly impact maternal weight recovery during the post-partum period.


2010 ◽  
Vol 1 (2) ◽  
pp. 197-207 ◽  
Author(s):  
W. Fernando ◽  
J. Hill ◽  
G. Zello ◽  
R. Tyler ◽  
W. Dahl ◽  
...  

The effects of diets supplemented with either chickpea or its main oligosaccharide raffinose on the composition of the faecal microbial community were examined in 12 healthy adults (18-65 years) in a randomised crossover intervention study. Subjects consumed their usual diet supplemented with soups and desserts that were unfortified, or fortified with either 200 g/d of canned chickpeas or 5 g/d of raffinose for 3 week periods. Changes in faecal bacterial populations of subjects were examined using 16S rRNA-based terminal restriction fragment length polymorphisms (T-RFLP) and clone libraries generated from the diet pools. Classification of the clone libraries and T-RFLP analysis revealed that Faecalibacterium prausnitzii, reported to be an efficient butyrate producer and a highly metabolically active bacterium in the human intestinal microbiota, was more abundant in the raffinose diet and the chickpea diet compared to the control diet. However, no significant difference was observed in the faecal total short chain fatty acid concentration or in the levels of the components (butyrate, acetate and propionate) with the chickpea diet or the raffinose diet compared to the control diet. Bifidobacterium species were detected by T-RFLP in all three diet groups and quantitative real-time PCR (qPCR) analysis showed a marginal increase in 16S rRNA gene copies of Bifidobacterium with the raffinose diet compared to control (P>0.05). The number of individuals showing TRFs for the Clostridium histolyticum - Clostridum lituseburense groups, which include pathogenic bacteria species and putrefactive bacteria, were lower in the chickpea diet compared to the other two treatments. Diet appeared to affect colonisation by a high ammonia-producing bacterial isolate which was detected in 83%, 92% and 42% of individuals in the control, raffinose and chickpea groups, respectively. Our results indicate that chickpea and raffinose have the potential to modulate the intestinal microbial composition to promote intestinal health in humans.


2016 ◽  
Vol 62 (6) ◽  
pp. 538-541 ◽  
Author(s):  
Marija Kaevska ◽  
Petra Videnska ◽  
Karel Sedlar ◽  
Iva Bartejsova ◽  
Alena Kralova ◽  
...  

The aim of this study was to determine possible differences in the faecal microbiota of dairy cows infected with Mycobacterium avium subsp. paratuberculosis (Johne’s disease) in comparison with noninfected cows from the same herds. Faecal samples from cows in 4 herds were tested for M. avium subsp. paratuberculosis by real-time PCR, and faecal bacterial populations were analysed by 454 pyrosequencing of the 16S rRNA gene. The most notable differences between shedding and nonshedding cows were an increase in the genus Psychrobacter and a decrease in the genera Oscillospira, Ruminococcus, and Bifidobacterium in cows infected with M. avium subsp. paratuberculosis. The present study is the first to report the faecal microbial composition in dairy cows infected with M. avium subsp. paratuberculosis.


2021 ◽  
Author(s):  
Katie Bull ◽  
Gareth Davies ◽  
Timothy Patrick Jenkins ◽  
Laura Elizabeth Peachey

Abstract BackgroundChanges to the gut microbiota are associated with an increased incidence of disease in many species. This is particularly important during the process of domestication, where captive animals commonly suffer from gastrointestinal (GI) pathology. Horses are a prime example of a species which suffers from a high incidence of (often life-threatening) GI diseases in domesticated environments. We aimed to indentify the gut microbial changes which occur due to domestication in horses by profiling the faecal microbiota of adult female Exmoor ponies under three management conditions, representing increasing levels of domestication.MethodsFaecal samples were collected from 29 adult female Exmoor ponies in the South West of the UK; ponies were categorised as Feral (n=10), Semi-Feral (n=10) and Domesticated (n=9), based on their management conditions; thus controlling for age, gender and random effects between groups. Diet and medication were recorded and faecal samples taken to assess parasite infection. Faecal microbial composition was profiled via high-throughput sequencing of the bacterial 16S rRNA gene.ResultsDownstream biostatistical analysis indicated profound step-wise changes in global microbial community structure in the transition from Feral to Semi-Feral to Domesticated groups. A relatively high abundance of members of the phylum Proteobacteria and Tenericutes were associated with the Domesticated group; and higher levels of Methanobacteria were seen in the Feral group. The Semi-Feral group frequently had intermediate levels of these taxa; however, they also exhibited the greatest ‘within group’ variation in bacterial diversity and parasites burdens. Functional predictions revealed increased amino acid and lipid metabolism in the Domesticated group and increased energy metabolism in the Feral group; supporting a hypothesis that differences in diet was the key driver of gut microbial composition. ConclusionsIf assumed the Feral population has a more natural gut microbial phenotype, akin to that with which horses have evolved, these data can potentially be used to provide microbial signitures of balanced gut homeostasis in horses; which, in turn, will aid prevention of GI disease in domesticated horses.


2021 ◽  
Author(s):  
Jipeng Jin ◽  
Liping Zhang ◽  
Qian Chen ◽  
Cunming Ma ◽  
Jianlei Jia ◽  
...  

Abstract This experiment investigated the impacts of feeding a maternal low-CP concentration diet having iso-essential amino acids on new born suckling piglets intestinal microbial composition and metabolic profiles. The Bamei swine breed was selected due to high meat quality and flavor, but demonstrates slower growth rates which may be related to jejunal nutrient supply. Forty randomly selected purebred Bamei sows were divided into two groups and fed a low dietary CP (12%, LP) or a normal CP (14%, CON) diet, respectively, but formulated to contain similar (iso-) essential amino acid concentrations per current recommendations. At 21 days, 12 piglets were randomly selected from each treatment and euthanized with jejunum content samples collected. The 16S rRNA gene sequencing and mass spectrometry-based metabolomics profiling were combined as an integrated approach for evaluating the functional impact of maternal CP concentrations on piglet intestinal microbiome. Even though piglets demonstrated similar 0 to 21 d ADG among treatments, the jejunum relative weight, villus width, crypt depth and muscular thickness were increased (P < 0.05), while villus height, and villus height:crypt depth were reduced (P < 0.05) for the material LP compared to the maternal fed CON diet. Maternal CP concentrations can modify the intestinal microbial composition of Bamei suckling piglets. The relative abundances of the bacterial species Escherichia-Shigella, Actinobacillus, Clostridium_sensu_stricto_1, Veillonella, and Turicibacter were increased (P < 0.05) in the maternal LP fed diet compared with the maternal fed CON diet. Jejunal digesta metabolomics analysis indicated that several amino acids were metabolized (i.e. cys, met, tyr phe and trp), biosynthesized (arg phe, tyr, and trp), or degraded (lys) were enriched (P < 0.05) for the maternal fed LP compared with the maternal fed CON. Correlation analysis demonstrated that certain intestinal bacterial genera were highly related to the histomorphology and altered intestinal microbiota metabolites. In conclusion, maternal dietary CP concentrations in excess of protein and amino acid requirements not only altered suckling Bamei piglets histomorphology, microbial composition and function, but also modulated jejunum microbial metabolic profiles, which aids in understanding the beneficial effects when feeding a maternal LP diet on piglet intestinal health.


Sign in / Sign up

Export Citation Format

Share Document