Screening Drought-Tolerant Native Plants for Attractiveness to Arthropod Natural Enemies in the U.S. Great Lakes Region

2019 ◽  
Author(s):  
Daniel R Gibson ◽  
Logan Rowe ◽  
Rufus Isaacs ◽  
Douglas A Landis

Abstract Arthropods provide a variety of critical ecosystem services in agricultural landscapes; however, agricultural intensification can reduce insect abundance and diversity. Designing and managing habitats to enhance beneficial insects requires the identification of effective insectary plants that attract natural enemies and provide floral resources. We tested the attractiveness of 54 plant species with tolerance to dry soils, contrasting perennial forbs and shrubs native to the Great Lakes region to selected non-native species in three common garden experiments in Michigan during 2015–2016. Overall, we found 32 species that attracted significantly more natural enemies than associated controls. Among these, Achillea millefolium and Solidago juncea were consistently among the most attractive plants at all three sites, followed by Solidago speciosa, Coreopsis tripteris, Solidago nemoralis, Pycnanthemum pilosum, and Symphyotrichum oolantangiense. Species which attracted significantly more natural enemies at two sites included: Asclepias syriaca, Asclepias tuberosa, Monarda fistulosa, Oligoneuron rigidum, Pycnanthemum virginianum, Dasiphora fruticosa, Ratibida pinnata, Asclepias verticillata, Monarda punctata, Echinacea purpurea, Helianthus occidentalis, Silphium integrifolium, Silphium terebinthinaceum, Helianthus strumosus, and Symphyotrichum sericeum. Two non-native species, Lotus corniculatus, and Centaurea stoebe, were also attractive at multiple sites but less so than co-blooming native species. Parasitic Hymenoptera were the most abundant natural enemies, followed by predatory Coleoptera and Hemiptera, while Hemiptera (Aphidae, Miridae, and Tingidae) were the most abundant herbivores. Collectively, these plant species can provide floral resources over the entire growing season and should be considered as potential insectary plants in future habitat management efforts.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4319
Author(s):  
Henry M. Streby ◽  
Gunnar R. Kramer ◽  
Sean M. Peterson ◽  
David E. Andersen

Background Assessing outcomes of habitat management is critical for informing and adapting conservation plans. From 2013–2019, a multi-stage management initiative aims to create >26,000 ha of shrubland and early-successional vegetation to benefit Golden-winged Warblers (Vermivora chrysoptera) in managed forested landscapes of the western Great Lakes region. We studied a dense breeding population of Golden-winged Warblers at Rice Lake National Wildlife Refuge (NWR) in Minnesota, USA, where shrubs and young trees were sheared during the winter of 2014–2015 in a single treatment supported in part by the American Bird Conservancy (ABC) and in part by other funding source(s) to benefit Golden-winged Warblers and other species associated with young forest [e.g., American Woodcock (Scalopax minor)] and as part of maintenance of early successional forest cover on the refuge. Methods We monitored abundance of Golden-winged Warblers before (2013–2014) and after (2015–2016) management at the treatment site and a control site, and we estimated full-season productivity (i.e., young recruited into the fall population) on the treatment site from predictive, spatially explicit models, informed by nest and fledgling survival data collected at sites in the western Great Lakes region, including Rice Lake NWR, during 2011 and 2012. Then, using biologically informed models of Golden-winged Warbler response to observed and predicted vegetation succession, we estimated the cumulative change in population recruitment over various scenarios of vegetation succession and demographic response. Results We observed a 32% decline in abundance of Golden-winged Warbler breeding pairs on the treatment site and estimated a 27% decline in per-pair full-season productivity following management, compared to no change in a nearby control site. In models that ranged from highly optimistic to progressively more realistic scenarios, we estimated a net loss of 72–460 juvenile Golden-winged Warblers produced from the treatment site in the 10–20 years following management. Even if our well-informed and locally validated productivity models produced erroneous estimates and the management resulted in only a temporary reduction in abundance (i.e., no change in productivity), our forecast models still predicted a net loss of 61–260 juvenile Golden-winged Warblers from the treatment site over the same time frame. Conclusions Our study sites represent only a small portion of a large young-forest management initiative directed at Golden-winged Warblers in the western Great Lakes region; however, the brush management, or shearing of shrubs and small trees, that was applied at our study site is a common treatment applied by contractors funded by ABC and its partners on public lands across Minnesota with the expressed intent of benefiting Golden-winged Warblers and related species. Furthermore, the resulting vegetation structure at our treatment site is consistent with that of other areas managed under the initiative, and ABC documents include our study site as successful Golden-winged Warbler management based on observations of ≥1 Golden-winged Warbler at the treatment site since the management. Our assessment demonstrates that, at least for the only site for which pre- and post-management data on Golden-winged Warblers exist, the shearing of shrubs and small trees has had a substantial and likely enduring negative impact on Golden-winged Warblers. We suggest that incorporating region-specific, empirical information about Golden-winged Warbler—habitat relations into habitat management efforts would increase the likelihood of a positive response by Golden-winged Warblers and also suggest that management directed generically at young forest may not benefit Golden-winged Warblers.


1989 ◽  
Vol 67 (4) ◽  
pp. 961-969 ◽  
Author(s):  
E. H. Hogg ◽  
J. K. Morton ◽  
Joan M. Venn

Species–area relations of vascular plants and the effect of nesting colonies of gulls on plant species composition were investigated for 77 islands in Georgian Bay and Lake Huron in the Great Lakes region of Canada. The percentage of plant species classed as alien, annual, or biennial was significantly greater on islands with gull colonies. The slope of the species–area curve was significantly steeper on islands supporting gull colonies compared with islands lacking gull colonies. The expected decline in species richness with increased island remoteness was not detected statistically using multiple regression analysis. The difference in species–area slopes does not appear to reflect a lower propagule immigration rate to islands with gull colonies, because gulls are important in the dispersal of alien plant species to these islands. Larger islands with gull colonies tended to have richer floras than islands of similar size without gull colonies. It is suggested that on these larger islands the presence of gull colonies produces a gradient of soil nutrient and disturbance regimes, thus increasing habitat heterogeneity and species richness.


Author(s):  
Shuang Liang

Zebra mussels were first introduced into the Great Lakes region in 1988, via the ballast water of international ships traveling through the St. Lawrence River. Since then, the aggressive colonization of zebra mussels have had devastating effects on the native aquatic biodiversity in the Great Lakes region. The continued proliferation of zebra mussels have led to increased filtering, high light transmittance through water and growth of benthic (lowest level of a body of water) plants. Due to the intensive filtration of zebra mussels, rapid bioaccumulation of botulinum toxin in their systems have caused high levels of mortality for waterfowl predators. As zebra mussels continue to dominate in predator-prey interactions and interspecies competition, a shift in the ecosystem equilibrium is occurring on varying trophic levels. These changes have not gone unnoticed. Zebra mussels have cost Canadian industries, businesses and communities over $5 billion in a single decade in clogged pipes and turbine damages. The associated economic repercussions from infrastructural damages and native species declines necessitate engagement from a multitude of stakeholders. Public awareness is absolutely vital in minimizing the impact of zebra mussels and preventing their distribution across freshwater in North America. In this presentation, I will discuss the ecological, economic and societal impacts of zebra mussels since their introduction to the Great Lakes region. In addition, I will examine a multitude of management strategies and recommendations to government, private sector and public stakeholders to reduce future impacts of mussels in the Great Lakes region.


Author(s):  
Rafael Alcalá Herrera ◽  
Belén Cotes ◽  
Nuria Agustí ◽  
Marco Tasin ◽  
Mario Porcel

AbstractHabitat management improves biological control by increasing the abundance and fitness of natural enemies through the provision of floral resources along field edges or between crops. Among the natural enemies reliant on flower resources, green lacewings often stand out due to their abundance, predation capacity and polyphagy. We evaluated the impact of tailored flower strips on the enhancement of natural enemies, especially green lacewings, in three organic cabbage (Brassica oleracea) farms in Southern Sweden. Insects were sampled from the flower strips, and cabbage pests and predators were visually recorded in the crop. In a laboratory assay, the pollen feeding preferences of Chrysoperla carnea (Stephens, 1836) were evaluated in a dual-choice test. The pollen consumed by the Chrysopidae was extracted from laboratory and field specimens, then quantified and identified. Flower strips were found to attract predators and parasitoids, whose abundance increased as flowers bloomed. Cabbage plants next to the flower strips showed lower pest infestation as compared to cabbage plant control, although no significant differences were observed in the number of predators. Chrysopidae used flower strips as feeding, reproduction and shelter sites and mainly consumed pollen from Phacelia tanacetifolia Benth. Under laboratory conditions, C. carnea showed a preference for P. tanacetifolia and Coriandrum sativum L. pollen over Borago officinalis L. and Fagopyrum esculentum Moench. We show that tailored flower strips could be an efficient tool for enhancing beneficial arthropods and should be considered in integrated pest management for cabbage crops.


1989 ◽  
Vol 67 (6) ◽  
pp. 1803-1820 ◽  
Author(s):  
J. K. Morton ◽  
E. H. Hogg

Experimental and observational data were used to determine the adaptations for dispersal in each of the 335 vascular plant species in the flora of Barrier Island, a typical limestone island in the Great Lakes. Most have adaptations for more than one mode of dispersal. Adaptations for dispersal by water were found in 211 species (63% of the flora), and by birds in 205 species (61% of the flora); only 22 species (6.5% of the flora) do not appear to have effective adaptations for dispersal by either of these means. The other three modes of dispersal to these islands are by wind (14% of plant species), dispersal across snow and ice (10%), and by man (6%). Alien species (23% of the flora) show greater dependence on birds (85% of the alien species) and man (12% of the alien species) for dispersal than do native species (54 and 5%, respectively). Sea gulls, particularly the Herring Gull (Larus delawarensis Ord.), are the major factor in the introduction of the alien flora. The heavily disturbed habitats created in the nesting sites of both Herring and Ring-billed (Larus argentatus Pontoppidan) gulls favour the persistence of many alien plant species on these islands.


2011 ◽  
Vol 4 (1) ◽  
pp. 11-21 ◽  
Author(s):  
Nicholas R. Jordan ◽  
Diane L. Larson ◽  
Sheri C. Huerd

AbstractDiversified grasslands that contain native plant species are being recognized as important elements of agricultural landscapes and for production of biofuel feedstocks as well as a variety of other ecosystem services. Unfortunately, establishment of such grasslands is often difficult, unpredictable, and highly vulnerable to interference and invasion by weeds. Evidence suggests that soil-microbial “legacies” of invasive perennial species can inhibit growth of native grassland species. However, previous assessments of legacy effects of soil occupancy by invasive species that invade grasslands have focused on single invasive species and on responses to invasive soil occupancy in only a few species. In this study, we tested the hypothesis that legacy effects of invasive species differ qualitatively from those of native grassland species. In a glasshouse, three invasive and three native grassland perennials and a native perennial mixture were grown separately through three cycles of growth and soil conditioning in soils with and without arbuscular mycorrhizal fungi (AMF), after which we assessed seedling growth in these soils. Native species differed categorically from invasives in their response to soil conditioning by native or invasive species, but these differences depended on the presence of AMF. When AMF were present, native species largely had facilitative effects on invasive species, relative to effects of invasives on other invasives. Invasive species did not facilitate native growth; neutral effects were predominant, but strong soil-mediated inhibitory effects on certain native species occurred. Our results support the hypothesis that successful plant invaders create biological legacies in soil that inhibit native growth, but suggest also this mechanism of invasion will have nuanced effects on community dynamics, as some natives may be unaffected by such legacies. Such native species may be valuable as nurse plants that provide cost-effective restoration of soil conditions needed for efficient establishment of diversified grasslands.


2016 ◽  
Author(s):  
Elsa A. Laubertie ◽  
Steve D. Wratten ◽  
Alexandra Magro ◽  
Jean Louis RGM Hemptinne

Modern agricultural landscapes favour crop pests: herbivores benefit from resource concentration and/or the absence of natural enemies in large areas of intensively farmed fields interspersed by small fragments of natural or non-crop habitats. Conservation biological control (CBC) aims at increasing the functional diversity of agricultural landscapes to make them more hospitable to natural enemies, and less to herbivores. Although natural enemies readily respond to this management, very few studies assess if they succeed in effectively protecting crops. We set up a field experiment to study if an ecological infrastructure varying in size and consisting of the provision of floral resources at the centre of lettuce plots would influence the number of eggs laid by hoverflies, and ultimately the control of lettuce aphids. We found that the hoverfly females lay more eggs in the plots with the larger flower resource compared to the control. However, this response had no impact on the abundance of aphids on the lettuces. We designed two laboratory experiments to understand this absence of response. We found mutual interference between hoverfly larvae, and suggest it may undermine the biological control of aphids. This mismatch between landscape management and the response of hoverflies indicates CBC should take into account insect behaviour, particularly their response to conspecific density, additionally to landscape ecology.


Author(s):  
Robyn McCallum ◽  
Nancy L. McLean ◽  
G. Christopher Cutler

Pollination and pest control are important in many agroecosystems. Beneficial insects that provide these services (e.g. bees and natural enemies) often require floral resources beyond crop bloom. Planting floral resources along crop field margins may be a useful tactic to support communities of beneficial insects in agroecosystems. We examined the effect of planting buckwheat (Fagopyrum esculentum Moench) along lowbush blueberry (Vaccinium angustifolium Aiton) field margins on beneficial insect abundance and species richness. We found that bee abundance was higher in buckwheat transects than control transects in 2014 and 2015, but not 2016, and that bee species richness was higher in buckwheat transects than in control transects in 2015 only. High variability occurred across years. All bee genera recorded during blueberry bloom were also collected in buckwheat transects, suggesting buckwheat is a useful resource for bee community involved in blueberry pollination. The effect of buckwheat on natural enemies was variable and inconsistent. We conclude buckwheat influenced bee and natural enemy communities during certain years, but field edges in the lowbush blueberry fields studied may already adequately support beneficial insects. Thus, not all habitat management efforts with augmentative floral plantings may consistently boost communities of beneficial insects.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 406
Author(s):  
Rochelle Sturtevant ◽  
El Lower ◽  
Austin Bartos ◽  
Ashley Elgin

The Laurentian Great Lakes of North America are home to thousands of native fishes, invertebrates, plants, and other species that not only provide recreational and economic value to the region but also hold an important ecological value. However, there are also 55 nonindigenous species of aquatic plants that may be competing with native species and affecting this value. Here, we use a key regional database—the Great Lakes Aquatic Nonindigenous Species Information System (GLANSIS)—to describe the introduction of nonindigenous aquatic plants in the Great Lakes region and to examine patterns relating to their capacity to compete with native plants species. Specifically, we used an existing catalog of environmental impact assessments to qualitatively evaluate the potential for each nonindigenous plant species to outcompete native plant species for available resources. Despite an invasion record spanning nearly two centuries (1837–2020), a great deal remains unknown about the impact of competition by these species. Nonetheless, our synthesis of existing documentation reveals that many of these nonindigenous species have notable impacts on the native plant communities of the region in general and on species of concern in particular. Furthermore, we provide a thorough summary of the diverse adaptations that may contribute to giving these nonindigenous plants a competitive advantage. Adaptations that have been previously found to aid successful invasions were common in 98% of the nonindigenous aquatic plant species in the database.


2008 ◽  
Vol 65 (3) ◽  
pp. 549-553 ◽  
Author(s):  
Janet W Reid ◽  
Patrick L Hudson

The four species of freshwater copepod crustaceans found in ballast water or sediments in ships and characterized as “nonindigenous” to the Laurentian Great Lakes region by Drake and Lodge (Can. J. Fish. Aquat. Sci. 64: 530–538 (2007)) are all widespread, North American natives. Drake and Lodge’s use of these native species to estimate the size of the “source pool” of the richness of potential invasive species resulted in an overestimation of its size. We list the fresh- and brackish-water species of copepods found in or on ships in the Great Lakes and discuss taxonomic and other questions pertaining to some of them. We suggest that Skistodiaptomus pallidus, Cyclops strenuus, Salmincola lotae, Nitokra incerta, and Onychocamptus mohammed be removed from the current list of nonindigenous copepod and branchiuran species established in the Great Lakes system, leaving seven species: Eurytemora affinis, Megacyclops viridis, Neoergasilus japonicus, Heteropsyllus nunni, Nitokra hibernica, Schizopera borutzkyi, and Argulus japonicus.


Sign in / Sign up

Export Citation Format

Share Document