Atlas of the immune cell repertoire in human atherosclerotic plaques characterized by single cell RNA-sequencing and multi-color flow cytometry

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
H Horstmann ◽  
A Lindau ◽  
S Hansen ◽  
P Stachon ◽  
I Hilgendorf ◽  
...  

Abstract Rationale Atherosclerosis is a chronic inflammatory disease that is driven by the accumulation of pro- and anti-inflammatory leukocytes in the intima of affected arteries. Yet, the cellular composition of human atherosclerotic plaques is only poorly understood. Here, we characterized immune cells to human carotid atherosclerotic plaques by multi-color flow cytometry and scRNAseq. Methods and results First, we compared a set of previously reported digestion protocols to liberate leukocytes from human carotid plaques after surgical thrombendarteriectomy. One digestion cocktail, containing Collagenase IV and DNase I, was superior regarding cell survival and cell surface marker preservation. Second, leukocytes from 56 surgical specimen were characterized by flow cytometry with a set of 16 parameters and cell surface markers capable of identifying principal hematopoietic leukocyte lineages. This protocol allowed to extract and analyze on average 4x103 viable CD45+ leukocytes from a mean of 988 mg plaque tissue. Surprisingly, we found that atherosclerotic plaques were dominated by T cells with 33.7±2.2% CD4+ T-helper cells and 25.6±2.5% CD8+ cytotoxic T cells. CD11b+ myeloid cells, including monocytes and macrophages, represented only 20.2±4.0% of all CD45+ leukocytes. CD19+B cells and CD56+ NK-cells accounted for 3.9±1.2 and 3.3±0.5%, respectively. TCR-g/d+ T cells and neutrophils were undetectable in atherosclerotic plaques. This cellular composition differed significantly from peripheral blood, but was not relevantly changed between different plaque locations, indicating that macrophage-rich necrotic cores mostly contain dead cells. We confirmed the principal composition of human plaques by single-cell RNA-sequencing from six patients. To allow an estimation of cellular heterogeneity independent of classical cell surface marker assignment, we performed an unsupervised cluster detection algorithm by t-distributed stochastic neighbor embedding (tSNE) and found more than 16 leukocyte clusters with unique cell surface marker expression, suggesting an unexpected high diversity of plaque leukocytes. Conclusion We developed an immune cell phenotyping protocol optimized for human carotid plaques. The definition of phenotypes and frequencies in atherosclerotic plaques will allow to build clinical associations between the immune cell composition and clinical outcomes in future. Funding Acknowledgement Type of funding source: None

Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3345-3355 ◽  
Author(s):  
Yury Monczak ◽  
Michel Trudel ◽  
William W. Lamph ◽  
Wilson H. Miller

Abstract Retinoic acid (RA) induces differentiation, followed by apoptosis in acute promyelocytic leukemia (APL) cells, both in vitro and in patients. One problem in understanding these mechanisms is to distinguish molecular events leading to differentiation from those leading to apoptosis. We have identified a leukemic cell line, PLB-985, where RA directly induces apoptosis with no morphologic, genetic, or cell-surface marker evidence of differentiation. These cells differentiate following dimethyl sulfoxide (DMSO), but not RA, treatment. Two-color flow cytometry showed no alteration of the cell cycle after RA treatment, and cell-surface marker analysis of CD11a, CD11b, and CD13 showed no modulation typical of differentiating cells. RNA expression of myeloblastin and transglutaminase, genes regulated by RA-induced differentiation in NB4 cells, was unchanged by RA treatment. Instead, RA induced apoptosis, as shown by typical apoptotic morphological features, genomic DNA laddering, and positive labeling in the TUNEL assay. We found that induction of apoptosis in this model requires a different pattern of retinoid receptor binding and transcriptional activation than is seen in APL cells. As previously described, treatment with retinoid receptor-selective ligands showed that stimulation of RAR alone is sufficient to induce differentiation and apoptosis in NB4 cells, and that stimulation of RXR has no effect on the parameters analyzed. In PLB-985 cells, on the other hand, apoptosis was induced only upon costimulation of both RAR and RXR. Stimulation of either receptor alone had no effect on the cells. Consistent with these findings, bcl-2 RNA and protein levels were downregulated after stimulation of both RAR and RXR, but not with an RAR-specific ligand alone, as in NB4 cells. The expression of several other bcl-2 family members (bcl-X, ich-1, bax, bag, and bak ) and retinoid receptors (RARα, RXRα, and RXRβ) was not affected by treatment with RAR- and/or RXR-activating retinoids; RARβ RNA was undetectable before and after retinoid treatment. Thus, our cell model provides a useful tool in determining the genetic events mediating apoptosis as a response to RA, unobscured by events implicated in differentiation.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5206-5206 ◽  
Author(s):  
Sacha L. Prashad ◽  
Leylah Drusbosky ◽  
Hassan Sibai ◽  
Mark D. Minden ◽  
Stephen J. Western ◽  
...  

Abstract Background: Prognoses for acute promyelocytic leukemia (APL) patients improved drastically upon the introduction of differentiation therapy with all-trans-retinoic acid (ATRA) in combination with conventional chemotherapy. Unfortunately, this therapeutic approach has not translated to other genetic subtypes of acute myeloid leukemia (AML) where patients demonstrate marked heterogeneity to differentiating agents. To provide improved detection of drug-induced differentiation in AML patients, we have developed a high-throughput, flow cytometry-based personalized medicine platform. Methods: Total white blood cells were isolated from each patient sample by red cell lysis, plated in serum-free media in 384-well format and incubated with drugs for 3 days. Viable cells remaining after each drug treatment were identified and quantified using cell surface marker expression, cell membrane integrity, and morphology (FSC/SSC) to determine the compound's efficacy and specificity against the blast population. Changes in cell surface marker expression and shifts in morphology indicative of blast differentiation were also evaluated with each compound. As a control for ex vivo differentiation, two APL patient samples were treated ex vivo with ATRA and we observed the blasts gaining CD66b expression indicating granulocytic differentiation. Results: A refractory AML patient was identified whose leukemic blasts exhibited a strong differentiating response to dexamethasone treatment ex vivo. This resulted in loss of CD34 expression (a marker of immature blast cells), gain of CD163 expression (a marker of monocytic/macrophage maturation) and a significant change in cellular size and granularity. After being enrolled in a clinical trial (REB: 13-6962-C) the patient was treated based on the assay for 1 week (40 mg/day) with dexamethasone. Post-treatment samples from the peripheral blood and bone marrow of the patient exhibited the same morphological and cell surface marker changes predicted by the ex vivo assay. The CD163+ cells in the patient also gained additional markers of myeloid differentiation (CD11b, CD14, CD16). After additional cytarabine and fludarabine treatment, the patient remains in remission 4 months post-treatment. Conclusions: Following this initial study, we have continued to identify subgroups of both AML and Myelodysplastic Syndrome patients where blasts differentiate in response to dexamethasone, calcitriol, ATRA or other known differentiating agents using unique cell surface markers of monocytic and myeloid maturation. Flow cytometry expression changes correlated with changes in morphology as observed by May-Grunwald Giemsa staining. In the patient described above this included an increase in cytoplasm and vacuoles consistent with monocytic/macrophage differentiation, which positively correlates with CD163 expression. We aim to apply our assay towards the identification of subgroups of AML patients who respond to differentiation therapies and develop clinical trials to combine differentiating agents with chemotherapy. This approach has the potential to extend the clinical success of APL differentiation therapy to AML patients. Disclosures Prashad: Notable Labs: Employment, Equity Ownership. Western:Notable Labs: Consultancy. Biondi:Notable Labs: Employment. Shah:Notable Labs: Employment. Liu:Notable Labs: Employment, Equity Ownership. Nguyen:Notable Labs: Employment, Equity Ownership. Warnock:Notable Labs: Employment, Equity Ownership. Quinzio:Notable Labs: Employment, Equity Ownership. De Silva:Notable Labs: Employment, Equity Ownership. Schimmer:Novartis: Honoraria. Heiser:Notable Labs: Employment, Equity Ownership.


2014 ◽  
Vol 3 (4) ◽  
pp. 470-480 ◽  
Author(s):  
Miriam E. van Strien ◽  
Jacqueline A. Sluijs ◽  
Brent A. Reynolds ◽  
Dennis A. Steindler ◽  
Eleonora Aronica ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document