scholarly journals Human enhancement

2019 ◽  
Vol 2019 (1) ◽  
pp. 183-189 ◽  
Author(s):  
Mara Almeida ◽  
Rui Diogo

Abstract Genetic engineering opens new possibilities for biomedical enhancement requiring ethical, societal and practical considerations to evaluate its implications for human biology, human evolution and our natural environment. In this Commentary, we consider human enhancement, and in particular, we explore genetic enhancement in an evolutionary context. In summarizing key open questions, we highlight the importance of acknowledging multiple effects (pleiotropy) and complex epigenetic interactions among genotype, phenotype and ecology, and the need to consider the unit of impact not only to the human body but also to human populations and their natural environment (systems biology). We also propose that a practicable distinction between ‘therapy’ and ‘enhancement’ may need to be drawn and effectively implemented in future regulations. Overall, we suggest that it is essential for ethical, philosophical and policy discussions on human enhancement to consider the empirical evidence provided by evolutionary biology, developmental biology and other disciplines. Lay Summary: This Commentary explores genetic enhancement in an evolutionary context. We highlight the multiple effects associated with germline heritable genetic intervention, the need to consider the unit of impact to human populations and their natural environment, and propose that a practicable distinction between ‘therapy’ and ‘enhancement’ is needed.

2021 ◽  
Vol 12 (4) ◽  
pp. 423-454
Author(s):  
Alexandru Gabriel Cioiu

In the human enhancement literature, there is a recurrent fear that biomedical technologies will negatively impact the autonomy and authenticity of moral agents, even when the agents would end up having better capacities and an improved life with the aid of these technologies. I will explore several ways in which biomedical enhancement may improve the autonomy of moral agents and try to show that biomedical methods are, all things considered, beneficial to our autonomy and authenticity. I will argue that there are instances when it’s desirable to limit the autonomy of moral agents and that strict regulations are to be put in place if a great number of people will have easy access to powerful, genetic-altering technologies which can impact the life of future children. I will advocate for using assisted reproductive technologies in order to select the child with the best chance of the best moral life and in doing so I will analyse several procreative principles which have been proposed by different scholars in the genetic enhancement debate and try to determine which one would be best to adhere to. Usually, people place high value on the concept of autonomy and there are many cases in which they end up overestimating autonomy in relation to other moral values. While autonomy is important, it’s also important to know how to limit it when reasonable societal norms require it. Sometimes autonomy is defined in strong connection with the concept of authenticity, in the sense that it’s not sufficient for our choices to be autonomous if they are not also authentic. I will try to defend the idea that authenticity can be enhanced as well with the aid of enhancement technologies which can actually prove beneficial in our quest to improve our own self.


Author(s):  
Daniel L. Hartl

A Primer of Population Genetics and Genomics, 4th edition, has been completely revised and updated to provide a concise but comprehensive introduction to the basic concepts of population genetics and genomics. Recent textbooks have tended to focus on such specialized topics as the coalescent, molecular evolution, human population genetics, or genomics. This primer bucks that trend by encouraging a broader familiarity with, and understanding of, population genetics and genomics as a whole. The overview ranges from mating systems through the causes of evolution, molecular population genetics, and the genomics of complex traits. Interwoven are discussions of ancient DNA, gene drive, landscape genetics, identifying risk factors for complex diseases, the genomics of adaptation and speciation, and other active areas of research. The principles are illuminated by numerous examples from a wide variety of animals, plants, microbes, and human populations. The approach also emphasizes learning by doing, which in this case means solving numerical or conceptual problems. The rationale behind this is that the use of concepts in problem-solving lead to deeper understanding and longer knowledge retention. This accessible, introductory textbook is aimed principally at students of various levels and abilities (from senior undergraduate to postgraduate) as well as practising scientists in the fields of population genetics, ecology, evolutionary biology, computational biology, bioinformatics, biostatistics, physics, and mathematics.


2018 ◽  
Author(s):  
Sebastian M. Sodini ◽  
Kathryn E. Kemper ◽  
Naomi R. Wray ◽  
Maciej Trzaskowski

AbstractAccurate estimation of genetic correlation requires large sample sizes and access to genetically informative data, which are not always available. Accordingly, phenotypic correlations are often assumed to reflect genotypic correlations in evolutionary biology. Cheverud’s conjecture asserts that the use of phenotypic correlations as proxies for genetic correlations is appropriate. Empirical evidence of the conjecture has been found across plant and animal species, with results suggesting that there is indeed a robust relationship between the two. Here, we investigate the conjecture in human populations, an analysis made possible by recent developments in availability of human genomic data and computing resources. A sample of 108,035 British European individuals from the UK Biobank was split equally into discovery and replication datasets. 17 traits were selected based on sample size, distribution and heritability. Genetic correlations were calculated using linkage disequilibrium score regression applied to the genome-wide association summary statistics of pairs of traits, and compared within and across datasets. Strong and significant correlations were found for the between-dataset comparison, suggesting that the genetic correlations from one independent sample were able to predict the phenotypic correlations from another independent sample within the same population. Designating the selected traits as morphological or non-morphological indicated little difference in correlation. The results of this study support the existence of a relationship between genetic and phenotypic correlations in humans. This finding is of specific interest in anthropological studies, which use measured phenotypic correlations to make inferences about the genetics of ancient human populations.


2019 ◽  
Vol 81 (2) ◽  
pp. 79-87 ◽  
Author(s):  
María José Apodaca ◽  
Joseph D. McInerney ◽  
Osvaldo E. Sala ◽  
Liliana Katinas ◽  
Jorge V. Crisci

Is it possible to teach biology without mentioning evolution? The answer is yes, but it is not possible for students to understand biology without the evolutionary context on which the meaning and intellectual value of biological concepts depend. Meaningful learning of evolution requires (1) that the students incorporate new knowledge into a cognitive structure linked with higher-order concepts; (2) a well-organized knowledge structure; and (3) a positive emotional attachment and identification (affective commitment) to the subject by the learner. Concept maps are useful tools in meaningful learning. We present a concept map that organizes concepts of history of life and the processes that generate it, and the hierarchical relationships among them. Biological evolution is a compelling account of life on Earth and of human origins. It constitutes a unifying explanatory framework that can generate a powerful affective commitment to the subject. The concept map provided here is tied to the Next Generation Science Standards (NGSS).


2016 ◽  
Vol 12 (8) ◽  
pp. 20160137 ◽  
Author(s):  
Kathryn E. Arnold ◽  
Nicola J. Williams ◽  
Malcolm Bennett

Antimicrobial resistance (AMR) has been detected in the microbiota of many wildlife species, including long-distance migrants. Inadequately treated wastes from humans and livestock dosed with antimicrobial drugs are often assumed to be the main sources of AMR to wildlife. While wildlife populations closely associated with human populations are more likely to harbour clinically important AMR related to that found in local humans and livestock, AMR is still common in remote wildlife populations with little direct human influence. Most reports of AMR in wildlife are survey based and/or small scale, so researchers can only speculate on possible sources and sinks of AMR or the impact of wildlife AMR on clinical resistance. This lack of quantitative data on the flow of AMR genes and AMR bacteria across the natural environment could reflect the numerous AMR sources and amplifiers in the populated world. Ecosystems with relatively simple and well-characterized potential inputs of AMR can provide tractable, but realistic, systems for studying AMR in the natural environment. New tools, such as animal tracking technologies and high-throughput sequencing of resistance genes and mobilomes, should be integrated with existing methodologies to understand how wildlife maintains and disperses AMR.


2015 ◽  
Vol 112 (8) ◽  
pp. 2307-2313 ◽  
Author(s):  
Madeleine J. H. van Oppen ◽  
James K. Oliver ◽  
Hollie M. Putnam ◽  
Ruth D. Gates

The genetic enhancement of wild animals and plants for characteristics that benefit human populations has been practiced for thousands of years, resulting in impressive improvements in commercially valuable species. Despite these benefits, genetic manipulations are rarely considered for noncommercial purposes, such as conservation and restoration initiatives. Over the last century, humans have driven global climate change through industrialization and the release of increasing amounts of CO2, resulting in shifts in ocean temperature, ocean chemistry, and sea level, as well as increasing frequency of storms, all of which can profoundly impact marine ecosystems. Coral reefs are highly diverse ecosystems that have suffered massive declines in health and abundance as a result of these and other direct anthropogenic disturbances. There is great concern that the high rates, magnitudes, and complexity of environmental change are overwhelming the intrinsic capacity of corals to adapt and survive. Although it is important to address the root causes of changing climate, it is also prudent to explore the potential to augment the capacity of reef organisms to tolerate stress and to facilitate recovery after disturbances. Here, we review the risks and benefits of the improvement of natural and commercial stocks in noncoral reef systems and advocate a series of experiments to determine the feasibility of developing coral stocks with enhanced stress tolerance through the acceleration of naturally occurring processes, an approach known as (human)-assisted evolution, while at the same time initiating a public dialogue on the risks and benefits of this approach.


2020 ◽  
Vol 375 (1811) ◽  
pp. 20190609 ◽  
Author(s):  
Megan F. Cole ◽  
Averill Cantwell ◽  
Joshua Rukundo ◽  
Lilly Ajarova ◽  
Sofia Fernandez-Navarro ◽  
...  

Chimpanzees ( Pan troglodytes ) are a crucial model for understanding the evolution of human health and longevity. Cardiovascular disease is a major source of mortality during ageing in humans and therefore a key issue for comparative research. Current data indicate that compared to humans, chimpanzees have proatherogenic blood lipid profiles, an important risk factor for cardiovascular disease in humans. However, most work to date on chimpanzee lipids come from laboratory-living populations where lifestyles diverge from a wild context. Here, we examined cardiovascular profiles in chimpanzees living in African sanctuaries, who range semi-free in large forested enclosures, consume a naturalistic diet, and generally experience conditions more similar to a wild chimpanzee lifestyle. We measured blood lipids, body weight and body fat in 75 sanctuary chimpanzees and compared them to publicly available data from laboratory-living chimpanzees from the Primate Aging Database. We found that semi-free-ranging chimpanzees exhibited lower body weight and lower levels of lipids that are risk factors for human cardiovascular disease, and that some of these disparities increased with age. Our findings support the hypothesis that lifestyle can shape health indices in chimpanzees, similar to effects observed across human populations, and contribute to an emerging understanding of human cardiovascular health in an evolutionary context. This article is part of the theme issue ‘Evolution of the primate ageing process’.


Sign in / Sign up

Export Citation Format

Share Document