scholarly journals A sugar utilization phenotype contributes to the formation of genetic exchange communities in lactic acid bacteria

Author(s):  
Shinkuro Takenaka ◽  
Takeshi Kawashima ◽  
Masanori Arita

Abstract In prokaryotes, a major contributor to genomic evolution is the exchange of genes via horizontal gene transfer (HGT). Areas with a high density of HGT networks are defined as genetic exchange communities (GECs). Although some phenotypes associated with specific ecological niches are linked to GECs, little is known about the phenotypic influences on HGT in bacterial groups within a taxonomic family. Thanks to the published genome sequences and phenotype data of Lactic Acid Bacteria (LAB), it is now possible to obtain more detailed information about the phenotypes that affect GECs. Here, we have investigated the relationship between HGT and internal and external environmental factors for 178 strains from 24 genera in the Lactobacillaceae family. We found a significant correlation between strains with high utilization of sugars and HGT bias. The result suggests that the phenotype of the utilization of a variety of sugars is key to the construction of GECs in this family. This feature is consistent with the fact that the Lactobacillaceae family contributes to the production of a wide variety of fermented foods by sharing niches such as those in vegetables, dairy products, and brewing-related environments. This result provides the first evidence that phenotypes associated with ecological niches contribute to form GECs in the LAB family.

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1435
Author(s):  
Hee Seo ◽  
Jae-Han Bae ◽  
Gayun Kim ◽  
Seul-Ah Kim ◽  
Byung Hee Ryu ◽  
...  

The use of probiotic starters can improve the sensory and health-promoting properties of fermented foods. This study aimed to evaluate the suitability of probiotic lactic acid bacteria (LAB) as a starter for kimchi fermentation. Seventeen probiotic type strains were tested for their growth rates, volatile aroma compounds, metabolites, and sensory characteristics of kimchi, and their characteristics were compared to those of Leuconostoc (Le.) mesenteroides DRC 1506, a commercial kimchi starter. Among the tested strains, Limosilactobacillus fermentum, Limosilactobacillus reuteri, Lacticaseibacillus rhamnosus, Lacticaseibacillus paracasei, and Ligilactobacillus salivarius exhibited high or moderate growth rates in simulated kimchi juice (SKJ) at 37 °C and 15 °C. When these five strains were inoculated in kimchi and metabolite profiles were analyzed during fermentation using GC/MS and 1H-NMR, data from the principal component analysis (PCA) showed that L. fermentum and L. reuteri were highly correlated with Le. mesenteroides in concentrations of sugar, mannitol, lactate, acetate, and total volatile compounds. Sensory test results also indicated that these three strains showed similar sensory preferences. In conclusion, L. fermentum and L. reuteri can be considered potential candidates as probiotic starters or cocultures to develop health-promoting kimchi products.


2020 ◽  
Vol 9 (1) ◽  
pp. 33
Author(s):  
Jirapat Kanklai ◽  
Tasneem Chemama Somwong ◽  
Patthanasak Rungsirivanich ◽  
Narumol Thongwai

Gamma-aminobutyric acid (GABA), the inhibitory neurotransmitter, can be naturally synthesized by a group of lactic acid bacteria (LAB) which is commonly found in rich carbohydrate materials such as fruits and fermented foods. Thirty-six isolates of GABA-producing LAB were obtained from Thai fermented foods. Among these, Levilactobacillus brevis F064A isolated from Thai fermented sausage displayed high GABA content, 2.85 ± 0.10 mg/mL and could tolerate acidic pH and bile salts indicating a promising probiotic. Mulberry (Morus sp.) is widely grown in Thailand. Many mulberry fruits are left to deteriorate during the high season. To increase its value, mulberry juice was prepared and added to monosodium glutamate (MSG), 2% (w/v) prior to inoculation with 5% (v/v) of L. brevis F064A and incubated at 37 °C for 48 h to obtain the GABA-fermented mulberry juice (GABA-FMJ). The GABA-FMJ obtained had 3.31 ± 0.06 mg/mL of GABA content, 5.58 ± 0.52 mg gallic acid equivalent/mL of antioxidant activity, 234.68 ± 15.53 mg cyanidin-3-glucoside/mL of anthocyanin, an ability to inhibit growth of Bacillus cereus TISTR 687, Salmonella Typhi DMST 22842 and Shigella dysenteriae DMST 1511, and 10.54 ± 0.5 log10 colony-forming units (CFU)/mL of viable L. brevis F064A cell count. This GABA-FMJ was considered as a potential naturally functional food for human of all ages.


2016 ◽  
Vol 79 (11) ◽  
pp. 1919-1928 ◽  
Author(s):  
SHUANG XU ◽  
TAIGANG LIU ◽  
CHIRAZ AKOREDE IBINKE RADJI ◽  
JING YANG ◽  
LANMING CHEN

ABSTRACT In this study, we analyzed Chinese traditional fermented food to isolate and identify new lactic acid bacteria (LAB) strains with novel functional properties and to evaluate their cellular antioxidant and bile salt hydrolase (BSH) activities in vitro. A sequential screening strategy was developed to efficiently isolate and obtain 261 LAB strains tolerant of bile salt, acid, and H2O2 from nine Chinese traditional fermented foods. Among these strains, 70 were identified as having 2,2-diphenyl-1-picrylhydrazyl radical scavenging and/or BSH activity. These strains belonged to eight species: Enterococcus faecium (33% of the strains), Lactobacillus plantarum (26%), Leuconostoc mesenteroides (14%), Pediococcus pentosaceus (6%), Enterococcus durans (9%), Lactobacillus brevis (9%), Pediococcus ethanolidurans (3%), and Lactobacillus casei (1%). The pulsed-field gel electrophoresis genome fingerprinting profiles of these strains revealed 38 distinct pulsotypes, indicating a high level of genomic diversity among the tested strains. Twenty strains were further evaluated for hydroxyl radical scavenging activity, reducing power, and ferrous ion chelating activity exerted by both viable intact cells and/or intracellular cell-free extracts. Some strains, such as L. plantarum D28 and E. faecium B28, had high levels of both cellular antioxidant and BSH activities in vitro. These strains are promising probiotic components for health-promoting functional foods.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 156
Author(s):  
Dominika Jurášková ◽  
Susana C. Ribeiro ◽  
Celia C. G. Silva

The production of exopolysaccharides (EPS) by lactic acid bacteria (LAB) has attracted particular interest in the food industry. EPS can be considered as natural biothickeners as they are produced in situ by LAB and improve the rheological properties of fermented foods. Moreover, much research has been conducted on the beneficial effects of EPS produced by LAB on modulating the gut microbiome and promoting health. The EPS, which varies widely in composition and structure, may have diverse health effects, such as glycemic control, calcium and magnesium absorption, cholesterol-lowering, anticarcinogenic, immunomodulatory, and antioxidant effects. In this article, the latest advances on structure, biosynthesis, and physicochemical properties of LAB-derived EPS are described in detail. This is followed by a summary of up-to-date methods used to detect, characterize and elucidate the structure of EPS produced by LAB. In addition, current strategies on the use of LAB-produced EPS in food products have been discussed, focusing on beneficial applications in dairy products, gluten-free bakery products, and low-fat meat products, as they positively influence the consistency, stability, and quality of the final product. Highlighting is also placed on reports of health-promoting effects, with particular emphasis on prebiotic, immunomodulatory, antioxidant, cholesterol-lowering, anti-biofilm, antimicrobial, anticancer, and drug-delivery activities.


2018 ◽  
Vol 15 (1) ◽  
pp. 1
Author(s):  
Fathyah Hanum Pamungkaningtyas ◽  
Mariyatun Mariyatun ◽  
Rafli Zulfa Kamil ◽  
Ryan Haryo Setyawan ◽  
Pratama Nur Hasan ◽  
...  

Lactic acid bacteria have been isolated from several Indonesian indigenous fermented foods and screened for the potential strains as probiotic candidates. The aim of this study was to evaluate sensory properties and respondents’ preference of yogurt-like set and yogurt-like drink with various Indonesian indigenous probiotic strains produced by dairy industry. Indigenous probiotics of Lactobacillus plantarum MUT-7 and Lactobacillus plantarum DAD-13 were used to produce yogurt-like set and yogurt-like drink. Family perception toward yogurt-like drink was performed in Yogyakarta involving 100 family members. The yogurt-like products were also compared to yogurt containing commercial Lactobacilus bulgaricus and Streptococus thermophilus or commercial yogurt produced by dairy company. Several sensory evaluation toward sensory properties and panelist’s preference were performed in different cities.  The result showed that the indigenous probiotic L. plantarum DAD-13 and L. plantarum MUT-7 were potential to be used as a starter culture for the production of yogurt-like set and yogurt-like drink. The combination of indigenous probiotics and indigenous lactic acid bacteria S. thermophilus DAD-11 resulted in better sensory properties of yogurt set compared to combination of L. bulgaricus and S. thermophilus. 


2020 ◽  
Vol 12 (4) ◽  
pp. 357-365
Author(s):  
H.I. Atta ◽  
A. Gimba ◽  
T. Bamgbose

Abstract. The production of bacteriocins by lactic acid bacteria affords them the ability to inhibit the growth of bacteria; they are particularly important in the biocontrol of human and plant pathogens. Lactic acid bacteria have been frequently isolated from fermented foods due to the high acidity these foods contain. In this study, lactic acid bacteria were isolated from garri, a popular Nigerian staple food, which is fermented from cassava, and their antagonistic activity against clinical and environmental isolates of Escherichia coli was determined. The species of Lactobacillus isolated include: Lactobacillus plantarum (50%), Lactobacillus fermentum (20%), Lactobacillus acidophilus (20%), and Lactobacillus salivarius (10%). Growth inhibition of the strains of E.coli was observed in Lactobacillus plantarum that inhibited the growth of both. The clinical and environmental isolates of E. coli were inhibited by Lactobacillus plantarum, while Lactobacillus acidophilus showed activity against only the clinical isolate. The greatest zone of inhibition against the strains of E. coli was recorded by Lactobacillus acidophilus (22.7±1.53 mm). The bacteriocins produced by Lactobacillus species have a good potential in the biocontrol of pathogens, and should be the focus of further studies on antibiotic resistant bacteria.


Sign in / Sign up

Export Citation Format

Share Document