scholarly journals Suitability Analysis of 17 Probiotic Type Strains of Lactic Acid Bacteria as Starter for Kimchi Fermentation

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1435
Author(s):  
Hee Seo ◽  
Jae-Han Bae ◽  
Gayun Kim ◽  
Seul-Ah Kim ◽  
Byung Hee Ryu ◽  
...  

The use of probiotic starters can improve the sensory and health-promoting properties of fermented foods. This study aimed to evaluate the suitability of probiotic lactic acid bacteria (LAB) as a starter for kimchi fermentation. Seventeen probiotic type strains were tested for their growth rates, volatile aroma compounds, metabolites, and sensory characteristics of kimchi, and their characteristics were compared to those of Leuconostoc (Le.) mesenteroides DRC 1506, a commercial kimchi starter. Among the tested strains, Limosilactobacillus fermentum, Limosilactobacillus reuteri, Lacticaseibacillus rhamnosus, Lacticaseibacillus paracasei, and Ligilactobacillus salivarius exhibited high or moderate growth rates in simulated kimchi juice (SKJ) at 37 °C and 15 °C. When these five strains were inoculated in kimchi and metabolite profiles were analyzed during fermentation using GC/MS and 1H-NMR, data from the principal component analysis (PCA) showed that L. fermentum and L. reuteri were highly correlated with Le. mesenteroides in concentrations of sugar, mannitol, lactate, acetate, and total volatile compounds. Sensory test results also indicated that these three strains showed similar sensory preferences. In conclusion, L. fermentum and L. reuteri can be considered potential candidates as probiotic starters or cocultures to develop health-promoting kimchi products.

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 156
Author(s):  
Dominika Jurášková ◽  
Susana C. Ribeiro ◽  
Celia C. G. Silva

The production of exopolysaccharides (EPS) by lactic acid bacteria (LAB) has attracted particular interest in the food industry. EPS can be considered as natural biothickeners as they are produced in situ by LAB and improve the rheological properties of fermented foods. Moreover, much research has been conducted on the beneficial effects of EPS produced by LAB on modulating the gut microbiome and promoting health. The EPS, which varies widely in composition and structure, may have diverse health effects, such as glycemic control, calcium and magnesium absorption, cholesterol-lowering, anticarcinogenic, immunomodulatory, and antioxidant effects. In this article, the latest advances on structure, biosynthesis, and physicochemical properties of LAB-derived EPS are described in detail. This is followed by a summary of up-to-date methods used to detect, characterize and elucidate the structure of EPS produced by LAB. In addition, current strategies on the use of LAB-produced EPS in food products have been discussed, focusing on beneficial applications in dairy products, gluten-free bakery products, and low-fat meat products, as they positively influence the consistency, stability, and quality of the final product. Highlighting is also placed on reports of health-promoting effects, with particular emphasis on prebiotic, immunomodulatory, antioxidant, cholesterol-lowering, anti-biofilm, antimicrobial, anticancer, and drug-delivery activities.


2012 ◽  
Vol 79 (2) ◽  
pp. 201-208 ◽  
Author(s):  
Micaela Pescuma ◽  
Elvira M. Hébert ◽  
Elena Bru ◽  
Graciela Font de Valdez ◽  
Fernanda Mozzi

The high nutritional value of whey makes it an interesting substrate for the development of fermented foods. The aim of this work was to evaluate the growth and proteolytic activity of sixty-four strains of lactic acid bacteria in whey to further formulate a starter culture for the development of fermented whey-based beverages. Fermentations were performed at 37°C for 24 h in 10 and 16% (w/v) reconstituted whey powder. Cultivable populations, pH, and proteolytic activity (o-phthaldialdehyde test) were determined at 6 and 24 h incubation. Hydrolysis of whey proteins was analysed by Tricine SDS-PAGE. A principal component analysis (PCA) was applied to evaluate the behaviour of strains. Forty-six percent of the strains grew between 1 and 2 Δlog CFU/ml while 19% grew less than 0·9 Δlog CFU/ml in both reconstituted whey solutions. Regarding the proteolytic activity, most of the lactobacilli released amino acids and small peptides during the first 6 h incubation while streptococci consumed the amino acids initially present in whey to sustain growth. Whey proteins were degraded by the studied strains although to different extents. Special attention was paid to the main allergenic whey protein, β-lactoglobulin, which was degraded the most byLactobacillus acidophilusCRL 636 andLb. delbrueckiisubsp.bulgaricusCRL 656. The strain variability observed and the PCA applied in this study allowed selecting appropriate strains able to improve the nutritional characteristics (through amino group release and protein degradation) and storage (decrease in pH) of whey.


2020 ◽  
Vol 44 (4) ◽  
pp. 454-489 ◽  
Author(s):  
Francesca De Filippis ◽  
Edoardo Pasolli ◽  
Danilo Ercolini

ABSTRACT Lactic acid bacteria (LAB) are present in foods, the environment and the animal gut, although fermented foods (FFs) are recognized as the primary niche of LAB activity. Several LAB strains have been studied for their health-promoting properties and are employed as probiotics. FFs are recognized for their potential beneficial effects, which we review in this article. They are also an important source of LAB, which are ingested daily upon FF consumption. In this review, we describe the diversity of LAB and their occurrence in food as well as the gut microbiome. We discuss the opportunities to study LAB diversity and functional properties by considering the availability of both genomic and metagenomic data in public repositories, as well as the different latest computational tools for data analysis. In addition, we discuss the role of LAB as potential probiotics by reporting the prevalence of key genomic features in public genomes and by surveying the outcomes of LAB use in clinical trials involving human subjects. Finally, we highlight the need for further studies aimed at improving our knowledge of the link between LAB-fermented foods and the human gut from the perspective of health promotion.


2020 ◽  
Vol 9 (1) ◽  
pp. 33
Author(s):  
Jirapat Kanklai ◽  
Tasneem Chemama Somwong ◽  
Patthanasak Rungsirivanich ◽  
Narumol Thongwai

Gamma-aminobutyric acid (GABA), the inhibitory neurotransmitter, can be naturally synthesized by a group of lactic acid bacteria (LAB) which is commonly found in rich carbohydrate materials such as fruits and fermented foods. Thirty-six isolates of GABA-producing LAB were obtained from Thai fermented foods. Among these, Levilactobacillus brevis F064A isolated from Thai fermented sausage displayed high GABA content, 2.85 ± 0.10 mg/mL and could tolerate acidic pH and bile salts indicating a promising probiotic. Mulberry (Morus sp.) is widely grown in Thailand. Many mulberry fruits are left to deteriorate during the high season. To increase its value, mulberry juice was prepared and added to monosodium glutamate (MSG), 2% (w/v) prior to inoculation with 5% (v/v) of L. brevis F064A and incubated at 37 °C for 48 h to obtain the GABA-fermented mulberry juice (GABA-FMJ). The GABA-FMJ obtained had 3.31 ± 0.06 mg/mL of GABA content, 5.58 ± 0.52 mg gallic acid equivalent/mL of antioxidant activity, 234.68 ± 15.53 mg cyanidin-3-glucoside/mL of anthocyanin, an ability to inhibit growth of Bacillus cereus TISTR 687, Salmonella Typhi DMST 22842 and Shigella dysenteriae DMST 1511, and 10.54 ± 0.5 log10 colony-forming units (CFU)/mL of viable L. brevis F064A cell count. This GABA-FMJ was considered as a potential naturally functional food for human of all ages.


2016 ◽  
Vol 79 (11) ◽  
pp. 1919-1928 ◽  
Author(s):  
SHUANG XU ◽  
TAIGANG LIU ◽  
CHIRAZ AKOREDE IBINKE RADJI ◽  
JING YANG ◽  
LANMING CHEN

ABSTRACT In this study, we analyzed Chinese traditional fermented food to isolate and identify new lactic acid bacteria (LAB) strains with novel functional properties and to evaluate their cellular antioxidant and bile salt hydrolase (BSH) activities in vitro. A sequential screening strategy was developed to efficiently isolate and obtain 261 LAB strains tolerant of bile salt, acid, and H2O2 from nine Chinese traditional fermented foods. Among these strains, 70 were identified as having 2,2-diphenyl-1-picrylhydrazyl radical scavenging and/or BSH activity. These strains belonged to eight species: Enterococcus faecium (33% of the strains), Lactobacillus plantarum (26%), Leuconostoc mesenteroides (14%), Pediococcus pentosaceus (6%), Enterococcus durans (9%), Lactobacillus brevis (9%), Pediococcus ethanolidurans (3%), and Lactobacillus casei (1%). The pulsed-field gel electrophoresis genome fingerprinting profiles of these strains revealed 38 distinct pulsotypes, indicating a high level of genomic diversity among the tested strains. Twenty strains were further evaluated for hydroxyl radical scavenging activity, reducing power, and ferrous ion chelating activity exerted by both viable intact cells and/or intracellular cell-free extracts. Some strains, such as L. plantarum D28 and E. faecium B28, had high levels of both cellular antioxidant and BSH activities in vitro. These strains are promising probiotic components for health-promoting functional foods.


1971 ◽  
Vol 34 (11) ◽  
pp. 521-525 ◽  
Author(s):  
J. R. Stamer ◽  
B. O. Stoyla ◽  
B. A. Dunckel

The effects of pH values and NaCl concentrations on the growth rates of five species of lactic acid bacteria commonly associated with the sauerkraut fermentation were determined in filter-sterilized cabbage juice. Growth rates of all cultures, with the exception of Pediococcus cerevisiae, were retarded by addition of salt, lower pH, or interaction of both pH and salt. Based upon lag and generation times, P. cerevisiae was the culture most tolerant to the pH and salt concentration employed, whereas Streptococcus faecalis was the most sensitive species. Of the heterofermentative cultures, Lactobacillus brevis was less subject to growth inhibition than Leuconostoc mesenteroides. Under conditions simulating those found during the initial phases of the sauerkraut fermentation (2.25% salt, pH 6.2), L. mesenteroides displayed the shortest lag and generation times of all cultures examined. This rapid growth rate coupled with a marked accelerated death rate may explain, in part, the reason this species is both the first to dominate and the first to die during the early phases of the sauerkraut fermentation. Although cabbage juice previously fermented by L. mesenteroides appears to inhibit growth of P. cerevisiae, it had no apparent inhibitory or stimulatory effects on the other cultures.


2018 ◽  
Vol 15 (1) ◽  
pp. 1
Author(s):  
Fathyah Hanum Pamungkaningtyas ◽  
Mariyatun Mariyatun ◽  
Rafli Zulfa Kamil ◽  
Ryan Haryo Setyawan ◽  
Pratama Nur Hasan ◽  
...  

Lactic acid bacteria have been isolated from several Indonesian indigenous fermented foods and screened for the potential strains as probiotic candidates. The aim of this study was to evaluate sensory properties and respondents’ preference of yogurt-like set and yogurt-like drink with various Indonesian indigenous probiotic strains produced by dairy industry. Indigenous probiotics of Lactobacillus plantarum MUT-7 and Lactobacillus plantarum DAD-13 were used to produce yogurt-like set and yogurt-like drink. Family perception toward yogurt-like drink was performed in Yogyakarta involving 100 family members. The yogurt-like products were also compared to yogurt containing commercial Lactobacilus bulgaricus and Streptococus thermophilus or commercial yogurt produced by dairy company. Several sensory evaluation toward sensory properties and panelist’s preference were performed in different cities.  The result showed that the indigenous probiotic L. plantarum DAD-13 and L. plantarum MUT-7 were potential to be used as a starter culture for the production of yogurt-like set and yogurt-like drink. The combination of indigenous probiotics and indigenous lactic acid bacteria S. thermophilus DAD-11 resulted in better sensory properties of yogurt set compared to combination of L. bulgaricus and S. thermophilus. 


2020 ◽  
Vol 12 (4) ◽  
pp. 357-365
Author(s):  
H.I. Atta ◽  
A. Gimba ◽  
T. Bamgbose

Abstract. The production of bacteriocins by lactic acid bacteria affords them the ability to inhibit the growth of bacteria; they are particularly important in the biocontrol of human and plant pathogens. Lactic acid bacteria have been frequently isolated from fermented foods due to the high acidity these foods contain. In this study, lactic acid bacteria were isolated from garri, a popular Nigerian staple food, which is fermented from cassava, and their antagonistic activity against clinical and environmental isolates of Escherichia coli was determined. The species of Lactobacillus isolated include: Lactobacillus plantarum (50%), Lactobacillus fermentum (20%), Lactobacillus acidophilus (20%), and Lactobacillus salivarius (10%). Growth inhibition of the strains of E.coli was observed in Lactobacillus plantarum that inhibited the growth of both. The clinical and environmental isolates of E. coli were inhibited by Lactobacillus plantarum, while Lactobacillus acidophilus showed activity against only the clinical isolate. The greatest zone of inhibition against the strains of E. coli was recorded by Lactobacillus acidophilus (22.7±1.53 mm). The bacteriocins produced by Lactobacillus species have a good potential in the biocontrol of pathogens, and should be the focus of further studies on antibiotic resistant bacteria.


Sign in / Sign up

Export Citation Format

Share Document