scholarly journals Communication is key: extracellular vesicles as mediators of infection and defence during host–microbe interactions in animals and plants

Author(s):  
Henrik U. Stotz ◽  
Dominik Brotherton ◽  
Jameel Inal

ABSTRACT Extracellular vesicles (EVs) are now understood to be ubiquitous mediators of cellular communication. In this review, we suggest that EVs have evolved into a highly regulated system of communication with complex functions including export of wastes, toxins and nutrients, targeted delivery of immune effectors and vectors of RNA silencing. Eukaryotic EVs come in different shapes and sizes and have been classified according to their biogenesis and size distributions. Small EVs (or exosomes) are released through fusion of endosome-derived multivesicular bodies with the plasma membrane. Medium EVs (or microvesicles) bud off the plasma membrane as a form of exocytosis. Finally, large EVs (or apoptotic bodies) are produced as a result of the apoptotic process. This review considers EV secretion and uptake in four eukaryotic kingdoms, three of which produce cell walls. The impacts cell walls have on EVs in plants and fungi are discussed, as are roles of fungal EVs in virulence. Contributions of plant EVs to development and innate immunity are presented. Compelling cases are sporophytic self-incompatibility and cellular invasion by haustorium-forming filamentous pathogens. The involvement of EVs in all of these eukaryotic processes is reconciled considering their evolutionary history.

2019 ◽  
Author(s):  
Youngbin Lim ◽  
Margarita Khariton ◽  
Keara M. Lane ◽  
Anthony L. Shiver ◽  
Katharine M. Ng ◽  
...  

AbstractImaging dense and diverse microbial communities has broad applications in basic microbiology and medicine, but remains a grand challenge due to the fact that many species adopt similar morphologies. While prior studies have relied on techniques involving spectral labeling, we have developed an expansion microscopy method (μExM) in which cells are physically expanded prior imaging and their expansion patterns depend on the structural and mechanical properties of their cell walls, which vary across species and conditions. We use this phenomenon as a quantitative and sensitive phenotypic imaging contrast orthogonal to spectral separation in order to resolve bacterial cells of different species or in distinct physiological states. Focusing on host-microbe interactions that are difficult to quantify through fluorescence alone, we demonstrate the ability of μExM to distinguish species within a dense community throughin vivoimaging of a model gut microbiota, and to sensitively detect cell-envelope damage caused by antibiotics or previously unrecognized cell-to-cell phenotypic heterogeneity among pathogenic bacteria as they infect macrophages.


2019 ◽  
Vol 20 (6) ◽  
pp. 1487 ◽  
Author(s):  
Heon-Jin Lee

Extracellular vesicles (EVs) are evolutionary well-conserved nano-sized membranous vesicles that are secreted by both prokaryotic and eukaryotic cells. Recently, they have gained great attention for their proposed roles in cell-to-cell communication, and as biomarkers for human disease. In particular, small RNAs (sRNAs) contained within EVs have been considered as candidate interspecies-communication molecules, due to their demonstrated capacity to modulate gene expression in multiple cell types and species. While research into this field is in its infancy, elucidating the mechanisms that underlie host–microbe interactions and communications promises to impact many fields of biological research, including human health and medicine. Thus, this review discussed the results of recent studies that have examined the ways in which EVs and sRNAs mediate ‘microbe–host’ and ‘host–microbe’ interspecies communication.


2009 ◽  
Vol 4 (10) ◽  
pp. 457-462 ◽  
Author(s):  
Sebastian Fraune ◽  
Thomas C. G. Bosch ◽  
René Augustin

2021 ◽  
Author(s):  
Manoj Reddy Medapati ◽  
Anjali Y. Bhagirath ◽  
Nisha Singh ◽  
Prashen Chelikani

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 999
Author(s):  
Sue E. Crawford ◽  
Sasirekha Ramani ◽  
Sarah E. Blutt ◽  
Mary K. Estes

Historically, knowledge of human host–enteric pathogen interactions has been elucidated from studies using cancer cells, animal models, clinical data, and occasionally, controlled human infection models. Although much has been learned from these studies, an understanding of the complex interactions between human viruses and the human intestinal epithelium was initially limited by the lack of nontransformed culture systems, which recapitulate the relevant heterogenous cell types that comprise the intestinal villus epithelium. New investigations using multicellular, physiologically active, organotypic cultures produced from intestinal stem cells isolated from biopsies or surgical specimens provide an exciting new avenue for understanding human specific pathogens and revealing previously unknown host–microbe interactions that affect replication and outcomes of human infections. Here, we summarize recent biologic discoveries using human intestinal organoids and human enteric viral pathogens.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jack Jansma ◽  
Sahar El Aidy

AbstractThe human gut harbors an enormous number of symbiotic microbes, which is vital for human health. However, interactions within the complex microbiota community and between the microbiota and its host are challenging to elucidate, limiting development in the treatment for a variety of diseases associated with microbiota dysbiosis. Using in silico simulation methods based on flux balance analysis, those interactions can be better investigated. Flux balance analysis uses an annotated genome-scale reconstruction of a metabolic network to determine the distribution of metabolic fluxes that represent the complete metabolism of a bacterium in a certain metabolic environment such as the gut. Simulation of a set of bacterial species in a shared metabolic environment can enable the study of the effect of numerous perturbations, such as dietary changes or addition of a probiotic species in a personalized manner. This review aims to introduce to experimental biologists the possible applications of flux balance analysis in the host-microbiota interaction field and discusses its potential use to improve human health.


Sign in / Sign up

Export Citation Format

Share Document