scholarly journals The Epithelial adhesin 1 tandem repeat region mediates protein display through multiple mechanisms

2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Colin J Raposo ◽  
Kyle A McElroy ◽  
Stephen M Fuchs

ABSTRACT The pathogenic yeast Candida glabrata is reliant on a suite of cell surface adhesins that play a variety of roles necessary for transmission, establishment and proliferation during infection. One particular adhesin, Epithelial Adhesin 1 [Epa1p], is responsible for binding to host tissue, a process which is essential for fungal propagation. Epa1p structure consists of three domains: an N-terminal intercellular binding domain responsible for epithelial cell binding, a C-terminal GPI anchor for cell wall linkage and a serine/threonine-rich linker domain connecting these terminal domains. The linker domain contains a 40-amino acid tandem repeat region, which we have found to be variable in repeat copy number between isolates from clinical sources. We hypothesized that natural variation in Epa1p repeat copy may modulate protein function. To test this, we recombinantly expressed Epa1p with various repeat copy numbers in S. cerevisiae to determine how differences in repeat copy number affect Epa1p expression, surface display and binding to human epithelial cells. Our data suggest that repeat copy number variation has pleiotropic effects, influencing gene expression, protein surface display and shedding from the cell surface of the Epa1p adhesin. This study serves to demonstrate repeat copy number variation can modulate protein function through a number of mechanisms in order to contribute to pathogenicity of C. glabrata.

2019 ◽  
Author(s):  
Colin J. Raposo ◽  
Kyle A. McElroy ◽  
Stephen M. Fuchs

AbstractThe pathogenic yeast Candida glabrata is reliant on a suite of cell surface adhesins that play a variety of roles necessary for transmission, establishment, and proliferation during infection. One particular adhesin, Epithelial Adhesin 1 [Epa1p], is responsible for binding to host tissue, a process which is essential for fungal propagation. Epa1p structure consists of three domains: an N-terminal intercellular binding domain responsible for epithelial cell binding, a C-terminal GPI anchor for cell wall linkage, and a serine / threonine-rich linker domain connecting these terminal domains. The linker domain contains a 40-amino acid tandem repeat region, which we have found to be variable in repeat copy number between isolates from clinical sources. We hypothesized that natural variation in Epa1p repeat copy may modulate protein function. To test this, we recombinantly expressed Epa1p with various repeat copy numbers in S. cerevisiae to determine how differences in repeat copy number affect Epa1p expression, surface display, and binding to human epithelial cells. Our data suggest that repeat copy number variation has pleiotropic effects, influencing gene expression, protein surface display, shedding from the cell surface, and host tissue adhesion of the Epa1p adhesin. Understanding these links between repeat copy number variants and mechanisms of infection provide new understanding of the variety of roles of repetitive proteins contribute to pathogenicity of C. glabrata.


BMC Genomics ◽  
2013 ◽  
Vol 14 (1) ◽  
pp. 143 ◽  
Author(s):  
Mireille Schaap ◽  
Richard JLF Lemmers ◽  
Roel Maassen ◽  
Patrick J van der Vliet ◽  
Lennart F Hoogerheide ◽  
...  

2002 ◽  
Vol 120 (1) ◽  
pp. 93-106 ◽  
Author(s):  
Yuankai Lin ◽  
Tian Long Lin ◽  
Chia-Cheng Wang ◽  
Xuting Wang ◽  
Knut Stieger ◽  
...  

2009 ◽  
Vol 282 (4) ◽  
pp. 395-406 ◽  
Author(s):  
R. Navajas-Pérez ◽  
M. E. Quesada del Bosque ◽  
M. A. Garrido-Ramos

1998 ◽  
Vol 10 (11) ◽  
pp. 1915
Author(s):  
Mark S. Dixon ◽  
Kostas Hatzixanthis ◽  
David A. Jones ◽  
Kate Harrison ◽  
Jonathan D. G. Jones

2006 ◽  
Vol 188 (12) ◽  
pp. 4253-4263 ◽  
Author(s):  
Amy J. Vogler ◽  
Christine Keys ◽  
Yoshimi Nemoto ◽  
Rebecca E. Colman ◽  
Zack Jay ◽  
...  

ABSTRACT Variable-number tandem repeat (VNTR) loci have shown a remarkable ability to discriminate among isolates of the recently emerged clonal pathogen Escherichia coli O157:H7, making them a very useful molecular epidemiological tool. However, little is known about the rates at which these sequences mutate, the factors that affect mutation rates, or the mechanisms by which mutations occur at these loci. Here, we measure mutation rates for 28 VNTR loci and investigate the effects of repeat copy number and mismatch repair on mutation rate using in vitro-generated populations for 10 E. coli O157:H7 strains. We find single-locus rates as high as 7.0 × 10−4 mutations/generation and a combined 28-locus rate of 6.4 × 10−4 mutations/generation. We observed single- and multirepeat mutations that were consistent with a slipped-strand mispairing mutation model, as well as a smaller number of large repeat copy number mutations that were consistent with recombination-mediated events. Repeat copy number within an array was strongly correlated with mutation rate both at the most mutable locus, O157-10 (r 2 = 0.565, P = 0.0196), and across all mutating loci. The combined locus model was significant whether locus O157-10 was included (r 2 = 0.833, P < 0.0001) or excluded (r 2 = 0.452, P < 0.0001) from the analysis. Deficient mismatch repair did not affect mutation rate at any of the 28 VNTRs with repeat unit sizes of >5 bp, although a poly(G) homomeric tract was destabilized in the mutS strain. Finally, we describe a general model for VNTR mutations that encompasses insertions and deletions, single- and multiple-repeat mutations, and their relative frequencies based upon our empirical mutation rate data.


2001 ◽  
Vol 67 (12) ◽  
pp. 5370-5376 ◽  
Author(s):  
Bruce L. Geller ◽  
Nadine Wade ◽  
Thomas D. Gilberts ◽  
Dennis E. Hruby ◽  
Ryan Johanson ◽  
...  

ABSTRACT The C repeat region of the M6 protein (M6c) fromStreptococcus pyogenes was expressed within the Pip bacteriophage receptor on the surface of Lactococcus lactis. M6c was also detected in the culture medium. Thepip-emm6c allele was integrated into the chromosome and stably expressed without antibiotic selection. The level of cell-associated surface expression of PipM6c was 0.015% of total cellular protein. The amount of PipM6c on the cell surface was increased about 17-fold by expressing pip-emm6c from a high-copy-number plasmid. Replacing the native pippromoter with stronger promoters isolated previously fromLactobacillus acidophilus increased surface expression of PipM6c from the high-copy-number plasmid up to 27-fold. Concomitantly, the amount of PipM6c in the medium increased 113-fold. The amount of PipM6c did not vary greatly between exponential- and stationary-phase cultures. Western blots indicated that the full-length PipM6c protein and most of the numerous proteolytic products were found only on the cell surface, whereas only one proteolytic fragment was found in the culture medium.


Sign in / Sign up

Export Citation Format

Share Document