scholarly journals Dissecting the Effects of Selection and Mutation on Genetic Diversity in Three Wood White (Leptidea) Butterfly Species

2019 ◽  
Vol 11 (10) ◽  
pp. 2875-2886 ◽  
Author(s):  
Venkat Talla ◽  
Lucile Soler ◽  
Takeshi Kawakami ◽  
Vlad Dincă ◽  
Roger Vila ◽  
...  

Abstract The relative role of natural selection and genetic drift in evolution is a major topic of debate in evolutionary biology. Most knowledge spring from a small group of organisms and originate from before it was possible to generate genome-wide data on genetic variation. Hence, it is necessary to extend to a larger number of taxonomic groups, descriptive and hypothesis-based research aiming at understanding the proximate and ultimate mechanisms underlying both levels of genetic polymorphism and the efficiency of natural selection. In this study, we used data from 60 whole-genome resequenced individuals of three cryptic butterfly species (Leptidea sp.), together with novel gene annotation information and population recombination data. We characterized the overall prevalence of natural selection and investigated the effects of mutation and linked selection on regional variation in nucleotide diversity. Our analyses showed that genome-wide diversity and rate of adaptive substitutions were comparatively low, whereas nonsynonymous to synonymous polymorphism and substitution levels were comparatively high in Leptidea, suggesting small long-term effective population sizes. Still, negative selection on linked sites (background selection) has resulted in reduced nucleotide diversity in regions with relatively high gene density and low recombination rate. We also found a significant effect of mutation rate variation on levels of polymorphism. Finally, there were considerable population differences in levels of genetic diversity and pervasiveness of selection against slightly deleterious alleles, in line with expectations from differences in estimated effective population sizes.

2015 ◽  
Author(s):  
Jing Wang ◽  
Nathaniel R Street ◽  
Douglas G Scofield ◽  
Pär K Ingvarsson

AbstractA central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome re-sequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum and population-scaled recombination rates in three species ofPopulus:P. tremula, P. tremuloidesandP. trichocarpa. We find thatP. tremuloideshas the highest level of genome-wide variation, skewed allele frequencies and population-scaled recombination rates, whereasP. trichocarpaharbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, both due to purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination are largely explaining the disparate magnitudes and signatures of linked selection we observe among species. The present work provides the first phylogenetic comparative study at genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species.


2019 ◽  
Author(s):  
Xi Wang ◽  
Carolina Bernhardsson ◽  
Pär K. Ingvarsson

AbstractUnder the neutral theory, species with larger effective population sizes are expected to harbour higher genetic diversity. However, across a wide variety of organisms, the range of genetic diversity is orders of magnitude more narrow than the range of effective population size. This observation has become known as Lewontin’s paradox and although aspects of this phenomenon have been extensively studied, the underlying causes for the paradox remain unclear. Norway spruce (Picea abies) is a widely distributed conifer species across the northern hemisphere and it consequently plays a major role in European forestry. Here, we use whole-genome re-sequencing data from 35 individuals to perform population genomic analyses in P. abies in an effort to understand what drives genome-wide patterns of variation in this species. Despite having a very wide geographic distribution and an enormous current population size, our analyses find that genetic diversity of P.abies is low across a number of populations (p=0.005-0.006). To assess the reasons for the low levels of genetic diversity, we infer the demographic history of the species and find that it is characterised by several re-occurring bottlenecks with concomitant decreases in effective population size can, at least partly, provide an explanation for low polymorphism we observe in P. abies. Further analyses suggest that recurrent natural selection, both purifying and positive selection, can also contribute to the loss of genetic diversity in Norway spruce by reducing genetic diversity at linked sites. Finally, the overall low mutation rates seen in conifers can also help explain the low genetic diversity maintained in Norway spruce.


2021 ◽  
Author(s):  
András Cseh ◽  
Péter Poczai ◽  
Tibor Kiss ◽  
Krisztina Balla ◽  
Zita Berki ◽  
...  

Abstract Historical wheat landraces are rich sources of genetic diversity offering untapped reservoirs for broadening the genetic base of modern varieties. Using a 20K SNP array, we investigated the accessible genetic diversity in a Central European bread wheat landrace collection with great drought, heat stress tolerance and higher tillering capacity. We discovered distinct differences in the number of average polymorphisms between Central and Western European collections, and identified a set of novel rare alleles present at low frequencies in the historical collection. The detected polymorphisms were unevenly distributed along the wheat genome, and polymorphic markers co-localized with genes of great agronomic importance. The efficiency of the highly diverse population for Genome-Wide Association study was confirmed and two significant marker trait associations with seed hardness were identified on the 5DS chromosome arm. The geographical distribution of the inferred Bayesian clustering revealed six genetically homogenous ancestral groups among the collection, where the Central European core bared an admixed background originating from four ancestral groups. We evaluated the effective population sizes (Ne) of the Central European collection and assessed changes in diversity over time, which revealed a dramatic ~97% genetic erosion between 1955 and 2015.


2020 ◽  
Vol 287 (1922) ◽  
pp. 20192613 ◽  
Author(s):  
Elisa G. Dierickx ◽  
Simon Yung Wa Sin ◽  
H. Pieter J. van Veelen ◽  
M. de L. Brooke ◽  
Yang Liu ◽  
...  

Small effective population sizes could expose island species to inbreeding and loss of genetic variation. Here, we investigate factors shaping genetic diversity in the Raso lark, which has been restricted to a single islet for approximately 500 years, with a population size of a few hundred. We assembled a reference genome for the related Eurasian skylark and then assessed diversity and demographic history using RAD-seq data (75 samples from Raso larks and two related mainland species). We first identify broad tracts of suppressed recombination in females, indicating enlarged neo-sex chromosomes. We then show that genetic diversity across autosomes in the Raso lark is lower than in its mainland relatives, but inconsistent with long-term persistence at its current population size. Finally, we find that genetic signatures of the recent population contraction are overshadowed by an ancient expansion and persistence of a very large population until the human settlement of Cape Verde. Our findings show how genome-wide approaches to study endangered species can help avoid confounding effects of genome architecture on diversity estimates, and how present-day diversity can be shaped by ancient demographic events.


2011 ◽  
Vol 278 (1721) ◽  
pp. 3152-3160 ◽  
Author(s):  
Marie-Pierre Chapuis ◽  
Julie-Anne M. Popple ◽  
Karine Berthier ◽  
Stephen J. Simpson ◽  
Edward Deveson ◽  
...  

Linking demographic and genetic dispersal measures is of fundamental importance for movement ecology and evolution. However, such integration can be difficult, particularly for highly fecund species that are often the target of management decisions guided by an understanding of population movement. Here, we present an example of how the influence of large population sizes can preclude genetic approaches from assessing demographic population structuring, even at a continental scale. The Australian plague locust, Chortoicetes terminifera , is a significant pest, with populations on the eastern and western sides of Australia having been monitored and managed independently to date. We used microsatellites to assess genetic variation in 12 C. terminifera population samples separated by up to 3000 km. Traditional summary statistics indicated high levels of genetic diversity and a surprising lack of population structure across the entire range. An approximate Bayesian computation treatment indicated that levels of genetic diversity in C. terminifera corresponded to effective population sizes conservatively composed of tens of thousands to several million individuals. We used these estimates and computer simulations to estimate the minimum rate of dispersal, m , that could account for the observed range-wide genetic homogeneity. The rate of dispersal between both sides of the Australian continent could be several orders of magnitude lower than that typically considered as required for the demographic connectivity of populations.


1997 ◽  
Vol 69 (2) ◽  
pp. 111-116 ◽  
Author(s):  
ZIHENG YANG

The theory developed by Takahata and colleagues for estimating the effective population size of ancestral species using homologous sequences from closely related extant species was extended to take account of variation of evolutionary rates among loci. Nuclear sequence data related to the evolution of modern humans were reanalysed and computer simulations were performed to examine the effect of rate variation on estimation of ancestral population sizes. It is found that the among-locus rate variation does not have a significant effect on estimation of the current population size when sequences from multiple loci are sampled from the same species, but does have a significant effect on estimation of the ancestral population size using sequences from different species. The effects of ancestral population size, species divergence time and among-locus rate variation are found to be highly correlated, and to achieve reliable estimates of the ancestral population size, effects of the other two factors should be estimated independently.


2019 ◽  
Author(s):  
M. Elise Lauterbur

AbstractPopulation genetics employs two major models for conceptualizing genetic relationships among individuals – outcome-driven (coalescent) and process-driven (forward). These models are complementary, but the basic Kingman coalescent and its extensions make fundamental assumptions to allow analytical approximations: a constant effective population size much larger than the sample size. These make the probability of multiple coalescent events per generation negligible. Although these assumptions are often violated in species of conservation concern, conservation genetics often uses coalescent models of effective population sizes and trajectories in endangered species. Despite this, the effect of very small effective population sizes, and their interaction with bottlenecks and sample sizes, on such analyses of genetic diversity remains unexplored. Here, I use simulations to analyze the influence of small effective population size, population decline, and their relationship with sample size, on coalescent-based estimates of genetic diversity. Compared to forward process-based estimates, coalescent models significantly overestimate genetic diversity in oversampled populations with very small effective sizes. When sampled soon after a decline, coalescent models overestimate genetic diversity in small populations regardless of sample size. Such overestimates artificially inflate estimates of both bottleneck and population split times. For conservation applications with small effective population sizes, forward simulations that do not make population size assumptions are computationally tractable and should be considered instead of coalescent-based models. These findings underscore the importance of the theoretical basis of analytical techniques as applied to conservation questions.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
José Martín Pujolar ◽  
Mozes P. K. Blom ◽  
Andrew Hart Reeve ◽  
Jonathan D. Kennedy ◽  
Petter Zahl Marki ◽  
...  

AbstractTropical mountains harbor exceptional concentrations of Earth’s biodiversity. In topographically complex landscapes, montane species typically inhabit multiple mountainous regions, but are absent in intervening lowland environments. Here we report a comparative analysis of genome-wide DNA polymorphism data for population pairs from eighteen Indo-Pacific bird species from the Moluccan islands of Buru and Seram and from across the island of New Guinea. We test how barrier strength and relative elevational distribution predict population differentiation, rates of historical gene flow, and changes in effective population sizes through time. We find population differentiation to be consistently and positively correlated with barrier strength and a species’ altitudinal floor. Additionally, we find that Pleistocene climate oscillations have had a dramatic influence on the demographics of all species but were most pronounced in regions of smaller geographic area. Surprisingly, even the most divergent taxon pairs at the highest elevations experience gene flow across barriers, implying that dispersal between montane regions is important for the formation of montane assemblages.


2019 ◽  
Vol 62 (1) ◽  
pp. 143-151 ◽  
Author(s):  
Seyed Mohammad Ghoreishifar ◽  
Hossein Moradi-Shahrbabak ◽  
Nahid Parna ◽  
Pourya Davoudi ◽  
Majid Khansefid

Abstract. This research aimed to measure the extent of linkage disequilibrium (LD), effective population size (Ne), and runs of homozygosity (ROHs) in one of the major Iranian sheep breeds (Zandi) using 96 samples genotyped with Illumina Ovine SNP50 BeadChip. The amount of LD (r2) for single-nucleotide polymorphism (SNP) pairs in short distances (10–20 kb) was 0.21±0.25 but rapidly decreased to 0.10±0.16 by increasing the distance between SNP pairs (40–60 kb). The Ne of Zandi sheep in past (approximately 3500 generations ago) and recent (five generations ago) populations was estimated to be 6475 and 122, respectively. The ROH-based inbreeding was 0.023. We found 558 ROH regions, of which 37 % were relatively long (> 10 Mb). Compared with the rate of LD reduction in other species (e.g., cattle and pigs), in Zandi, it was reduced more rapidly by increasing the distance between SNP pairs. According to the LD pattern and high genetic diversity of Zandi sheep, we need to use an SNP panel with a higher density than Illumina Ovine SNP50 BeadChip for genomic selection and genome-wide association studies in this breed.


Sign in / Sign up

Export Citation Format

Share Document