scholarly journals Differential regulation of target genes by different alleles of the segmentation gene hunchback in Drosophila.

Genetics ◽  
1994 ◽  
Vol 138 (1) ◽  
pp. 125-134 ◽  
Author(s):  
M Hülskamp ◽  
W Lukowitz ◽  
A Beermann ◽  
G Glaser ◽  
D Tautz

Abstract hunchback (hb) is a key regulatory gene in the early segmentation gene hierarchy of Drosophila. It codes for a transcription factor of the Cys2-His2 zinc finger type and shows two separate zinc finger domains in its coding region. hb forms a morphogenetic gradient in the middle of the embryo that is required for setting the spatial boundaries of several target genes. We have analyzed the molecular lesions found in the different hb alleles and have studied the differential effects of these alleles on a number of such target genes. We find that in mutants in which the HB protein lacks a functional second finger domain, the regulation of the target genes Krüppel (Kr) and knirps (kni) is differentially affected. While this domain is required for the correct regulation of Kr, it is not necessary for the repression of kni. Furthermore, mutations affecting this domain lead to a decreased protein stability. The integration of the expression pattern of target genes was found to be distorted in a second class of mutants between the two finger domains which lead to gain of function or neomorphic phenotypes. The effects of these mutations were studied in detail and it was found that they fall into two classes, the first one interfering with the function of the maternal hb product, the second leading to a delayed segmentation. The function of the latter class appears to be linked to the secondary expression of hb in the parasegment 4 (PS4) stripe at blastoderm stage.

2001 ◽  
Vol 67 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Jeffrey A. Rollins ◽  
Martin B. Dickman

ABSTRACT Sclerotinia sclerotiorum acidifies its ambient environment by producing oxalic acid. This production of oxalic acid during plant infection has been implicated as a primary determinant of pathogenicity in this and other phytopathogenic fungi. We found that ambient pH conditions affect multiple processes in S. sclerotiorum. Exposure to increasing alkaline ambient pH increased the oxalic acid accumulation independent of carbon source, sclerotial development was favored by acidic ambient pH conditions but inhibited by neutral ambient pH, and transcripts encoding the endopolygalacturonase gene pg1 accumulated maximally under acidic culture conditions. We cloned a putative transcription factor-encoding gene, pac1, that may participate in a molecular signaling pathway for regulating gene expression in response to ambient pH. The three zinc finger domains of the predicted Pac1 protein are similar in sequence and organization to the zinc finger domains of the A. nidulans pH-responsive transcription factor PacC. The promoter of pac1 contains eight PacC consensus binding sites, suggesting that this gene, like its homologs, is autoregulated. Consistent with this suggestion, the accumulation ofpac1 transcripts paralleled increases in ambient pH. Pac1 was determined to be a functional homolog of PacC by complementation of an A. nidulans pacC-null strain with pac1. Our results suggest that ambient pH is a regulatory cue for processes linked to pathogenicity, development, and virulence and that these processes may be under the molecular regulation of a conserved pH-dependent signaling pathway analogous to that in the nonpathogenic fungus A. nidulans.


Author(s):  
Satoshi Yamanaka ◽  
Hidetaka Murai ◽  
Daisuke Saito ◽  
Gembu Abe ◽  
Etsuko Tokunaga ◽  
...  

AbstractThalidomide induces cereblon (CRBN)-dependent degradation of proteins. Human cytochrome P450s are thought to provide two monohydroxylated metabolites from thalidomide, and the metabolites are also considered to be involved in thalidomide effects. However, it remains unclear. We report that human PLZF/ZBTB16 is a target protein of CRBN with thalidomide and its derivatives, and that 5-hydroxythalidomide has high potential for degrading PLZF. Using a human transcription factor protein array produced by a wheat cell-free protein synthesis system, PLZF was found to bind to CRBN with thalidomide. PLZF is degraded by the CRL4CRBN complex with thalidomide and its derivatives. Mutagenesis analysis revealed that both 1st and 3rd zinc finger domains conserved in vertebrates are recognized for thalidomide-dependent binding and degradation by CRBN. In chicken limbs, knockdown of Plzf induced skeletal abnormalities, and Plzf was degraded after thalidomide or 5-hydroxythalidomide treatment. Our findings suggest that PLZF is a pivotal substrate involving thalidomide-induced teratogenesis.


Blood ◽  
2001 ◽  
Vol 98 (9) ◽  
pp. 2681-2688 ◽  
Author(s):  
Michele G. Mehaffey ◽  
Anthea L. Newton ◽  
Manish J. Gandhi ◽  
Merlin Crossley ◽  
Jonathan G. Drachman

Abstract A family with recessive X-linked thrombocytopenia affecting 4 males in 2 generations, characterized by macrothrombocytopenia, profound bleeding, and mild dyserythropoiesis, is described. Microsatellite linkage analysis identified a region of the X chromosome including theGATA-1 gene, which encodes a critical transcription factor involved in erythrocyte and megakaryocyte development. By sequencing the entire coding region of GATA-1, a 2-base mutation was detected that results in a single amino acid substitution (glycine 208 to serine) within a highly conserved portion of the N-terminal zinc finger domain. Restriction fragment length polymorphism confirmed that this novel mutation segregated with the affected males and female carrier. Although not required for DNA binding, Gly208 of GATA-1 is involved in direct interaction with Friend of GATA-1 (FOG), a cofactor required for normal megakaryocytic and erythroid development. These results demonstrate that the GATA-1–FOG interaction is partially disrupted by the mutation and that the greatest effect involves contact with the FOG zinc finger 9. These findings help describe a novel mutation of GATA-1 in humans as a cause of X-linked thrombocytopenia, and they confirm the vital role played by this transcription factor during in vivo megakaryocyte development.


2016 ◽  
Vol 473 (19) ◽  
pp. 3065-3079 ◽  
Author(s):  
M. Gomar-Alba ◽  
M. del Olmo

Hyperosmotic stress response involves the adaptative mechanisms needed for cell survival. Under high osmolarity conditions, many stress response genes are activated by several unrelated transcription factors that are controlled by the Hog1 kinase. Osmostress transcription factor Hot1 regulates the expression of several genes involved in glycerol biosynthesis, and the presence of this transcription factor in their promoters is essential for RNApol II recruitment. The physical association between Hog1 and Hot1 activates this transcription factor and directs the RNA polymerase II localization at these promoters. We, herein, demonstrate that physical and genetic interactions exist between Hot1 and several proteins involved in transcriptional and posttranscriptional processes: for example, transcription co-activator Sub1 and elongation complex Spt4/5. The results presented in this work demonstrate that Hot1 enrichment is not detected through the coding regions of its target genes and rule out a direct role in transcription elongation. Instead, other data presented herein indicate a key function of the Hot1 transcription factor in the recruitment of these proteins to the promoter or the 5′-coding region of the genes under its control.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3584-3584
Author(s):  
Atsushi Hasegawa ◽  
Hiroshi Kaneko ◽  
Daishi Ishihara ◽  
Masahiro Nakamura ◽  
Akira Watanabe ◽  
...  

Abstract GATA1 is a transcription factor that coordinately regulates multiple target genes during the development and differentiation of erythroid and megakaryocytic lineages through binding to GATA motif (A/T)GATA(A/G). GATA1 has four functional domains, i.e., two transactivation domains reside in amino- and carboxyl- terminus, which transactivate GATA1 target genes redundantly and/or cooperatively, and two zinc-finger domains in the middle of the protein. The two zinc finger domains of GATA1 have been characterized extensively and their links to human diseases have also been identified. Carboxyl-terminal side zinc (C)-finger is essential for the DNA binding of GATA1, whereas amino-terminal side zinc (N)-finger retains insufficient binding activity to the GATA motifs by itself, but contributes to stabilize the binding of C-finger to a double GATA site arranged in a palindromic manner. Of note, while this two-finger structure is conserved in six distinct vertebrate GATA factors, there exist GATA factors with single zinc finger in non-vertebrates, indicating that only the C-finger and following basic tail region are evolutionary conserved in both vertebrate and non-vertebrate GATA factors. In our transgenic rescue analyses, GATA1 lacking the N-finger (ΔNF-GATA1) supports, if not completely, the erythropoiesis in mice, but mice without C-finger (ΔCF-GATA1) die in utero showing similar phenotype to the mice with complete loss-of-GATA1-function. Therefore, roles that the N-finger plays have been assumed to be evolutionally acquired features during molecular evolution. In this study, we have examined GATA-motif configuration-specific modulation of GATA1 function by using composite GATA elements in which two GATA motifs aligned side-by-side, either tandem or palindromic. We have defined changes in the GATA1 binding and transactivation activity in accordance with the arrangement of cis -acting GATA motifs. While GATA1 binds to Single-GATA in a monovalent way via C-finger without the influence of N-finger, the N-finger appears to contribute to specific bivalent binding of GATA1 to Pal-GATA, i.e., the N- and C-fingers in a single GATA1 molecule individually bind to two GATA motifs aligned in a palindromic orientation. Showing very good agreement with the human case analyses, the transgenic expression of G1R216Q that lacks N-finger-DNA interaction potential hardly rescues the GATA1-deficient mice due to defects in definitive erythropoiesis, indicating that roles owed by R216 residue are vital for the GATA1 activity in vivo. The N-finger also contributes to GATA1 homodimer formation, which is a prerequisite for two GATA1 binding to two GATA motifs aligned in a tandem orientation. Each GATA1 C-finger in the dimeric GATA1 protein binds to each GATA motif in Tandem-GATA. In this regard, we previously found in a transgenic complementation rescue assay that mutant GATA1 molecule G13KA, which lacks the dimerization potential but possesses most of the other N- and C-finger functions, hardly rescues the GATA1-deficient mice from embryonic lethality, indicating that the GATA1 dimerization is important to attain full GATA1 activity. We surmise based on these observations that the configuration of cis -acting GATA motifs located in the regulatory regions of the GATA1 target genes critically influences the DNA-binding of GATA1 and controls transcription of the genes. Disclosures No relevant conflicts of interest to declare.


1997 ◽  
Vol 272 (12) ◽  
pp. 7801-7809 ◽  
Author(s):  
Vaibhav A. Narayan ◽  
Richard W. Kriwacki ◽  
John P. Caradonna

Sign in / Sign up

Export Citation Format

Share Document