scholarly journals Characterization of Schizosaccharomyces pombe mcm7+ and cdc23+ (MCM10) and Interactions With Replication Checkpoints

Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 471-486 ◽  
Author(s):  
Debbie T Liang ◽  
Susan L Forsburg

Abstract MCM proteins are required for the proper regulation of DNA replication. We cloned fission yeast mcm7+ and showed it is essential for viability; spores lacking mcm7+ begin S phase later than wild-type cells and arrest with an apparent 2C DNA content. We isolated a novel temperature-sensitive allele, mcm7-98, and also characterized two temperature-sensitive alleles of the fission yeast homolog of MCM10, cdc23+. mcm7-98 and both cdc23ts alleles arrest with damaged chromosomes and an S phase delay. We find that mcm7-98 is synthetically lethal with the other mcmts mutants but does not interact genetically with either cdc23ts allele. However, cdc23-M36 interacts with mcm4ts. Unlike other mcm mutants or cdc23, mcm7-98 is synthetically lethal with checkpoint mutants Δcds1, Δchk1, or Δrad3, suggesting chromosomal defects even at permissive temperature. Mcm7p is a nuclear protein throughout the cell cycle, and its localization is dependent on the other MCM proteins. Our data suggest that the Mcm3p-Mcm5p dimer interacts with the Mcm4p-Mcm6p-Mcm7p core complex through Mcm7p.

1994 ◽  
Vol 107 (10) ◽  
pp. 2779-2788 ◽  
Author(s):  
S.L. Forsburg ◽  
P. Nurse

We have cloned and characterized the fission yeast cdc19+ gene. We demonstrate that it encodes a structural homologue of the budding yeast MCM2 protein. In fission yeast, the cdc19+ gene is constitutively expressed, and essential for viability. Deletion delays progression through S phase, and cells arrest in the first cycle with an apparent 2C DNA content, with their checkpoint control intact. The temperature-sensitive cdc19-P1 mutation is synthetically lethal with cdc21-M68. In addition, we show by classical and molecular genetics that cdc19+ is allelic to the nda1+ locus. We conclude that cdc19p plays a potentially conserved role in S phase.


Author(s):  
Misaki Yasuda ◽  
Ahmed G K Habib ◽  
Kanako Sugiura ◽  
Hossain Mohammad Shamim ◽  
Masaru Ueno

Abstract Circular chromosomes have frequently been observed in tumors of mesenchymal origin. In the fission yeast Schizosaccharomyces pombe, deletion of pot1+ results in rapid telomere loss, and the resulting survivors have circular chromosomes. Fission yeast has two bromodomains and extra-terminal (BET) proteins, Bdf1 and Bdf2; both are required for maintaining acetylated histones. Here, we found that bdf2, but not bdf1, was synthetically lethal with pot1. We also obtained a temperature-sensitive bdf2-ts mutant, which can grow at high temperatures but becomes camptothecin sensitive. This suggests that Bdf2 is defective at high temperatures. The cell cycle of the pot1 bdf2-ts mutant was delayed in the G2 and/or M phase at a semi-permissive temperature. Furthermore, a temperature-sensitive mutant of mst1, which encodes histone acetyltransferase, showed a synthetic growth defect with a pot1 disruptant at a semi-permissive temperature. Our results suggest that Bdf2 and Mst1 are required for the growth of cells with circular chromosomes.


1999 ◽  
Vol 112 (4) ◽  
pp. 559-567 ◽  
Author(s):  
D.T. Liang ◽  
J.A. Hodson ◽  
S.L. Forsburg

MCM proteins are a conserved family of eukaryotic replication factors implicated in the initiation of DNA replication and in the discrimination between replicated and unreplicated chromatin. However, most mcm mutants in yeast arrest the cell cycle after bulk DNA synthesis has occurred. We investigated the basis for this late S phase arrest by analyzing the effects of a temperature-sensitive mutation in fission yeast cdc19(+)(mcm2(+)). cdc19-P1 cells show a dramatic loss of viability at the restrictive temperature, which is not typical of all S phase mutants. The cdc19-P1 cell cycle arrest requires an intact damage-response checkpoint and is accompanied by increased rates of chromosome loss and mitotic recombination. Chromosomes from cdc19-P1 cells migrate aberrantly in pulsed-field gels, typical of strains arrested with unresolved replication intermediates. The cdc19-P1 mutation reduces the level of the Cdc19 protein at all temperatures. We compared the effects of disruptions of cdc19(+)(mcm2(+)), cdc21(+)(mcm4(+)), nda4(+)(mcm5(+)) and mis5(+)(mcm6(+)); in all cases, the null mutants underwent delayed S phase but were unable to proceed through the cell cycle. Examination of protein levels suggests that this delayed S phase reflects limiting, but not absent, MCM proteins. Thus, reduced dosage of MCM proteins allows replication initiation, but is insufficient for completion of S phase and cell cycle progression.


1983 ◽  
Vol 96 (6) ◽  
pp. 1592-1600 ◽  
Author(s):  
T R Manney ◽  
P Jackson ◽  
J Meade

Two mutants of Saccharomyces cerevisiae have been isolated from normal haploid MAT alpha strains and characterized as having temperature-sensitive, pleiotropic phenotypes for functions associated with mating. At the permissive temperature, 23 degrees C, they were found to behave as normal MAT alpha haploids with respect to mating efficiency, sporulation in diploids formed with MAT a strains, secretion of alpha-factor, and failure to secrete the MATa-specific products, a-factor and Barrier. At higher temperatures they were found to decline in mating and sporulation efficiency and to express the a-specific functions. Genetic analysis established that one of these mutants, PE34, carries a temperature-sensitive allele of the MAT alpha 2 gene and that the other, PD7, carries a temperature-sensitive allele of the TUP1 gene.


2004 ◽  
Vol 15 (4) ◽  
pp. 1656-1665 ◽  
Author(s):  
Barbara A. Weir ◽  
Michael P. Yaffe

The mmd1 mutation causes temperature-sensitive growth and defects in mitochondrial morphology and distribution in the fission yeast Schizosaccharomyces pombe. In mutant cells, mitochondria aggregate at the two cell ends, with increased aggregation at elevated temperatures. Microtubules, which mediate mitochondrial positioning in fission yeast, seem normal in mmd1 cells at permissive temperature and after several hours at the nonpermissive temperature but display aberrant organization after prolonged periods at 37°C. Additionally, cells harboring both mmd1 and ban5-4, a temperature-sensitive allele of α2-tubulin, display synthetic defects in growth and mitochondrial distribution. The mmd1 mutation maps to an open reading frame encoding a novel 35.7-kDa protein. The Mmd1p sequence features repeating EZ-HEAT motifs and displays high conservation with uncharacterized homologues found in a variety of organisms. Saccharomyces cerevisiae cells depleted for their MMD1 homologue show increased sensitivity to the antimicrotubule drug benomyl, and the S. cerevisiae gene complemented the S. pombe mutation. Mmd1p was localized to the cytosol. Mmd1p is the first identified component required for the alignment of mitochondria along microtubules in fission yeast.


Genetics ◽  
2001 ◽  
Vol 159 (1) ◽  
pp. 17-33
Author(s):  
Matthew D Jacobson ◽  
Claudia X Muñoz ◽  
Kirstin S Knox ◽  
Beth E Williams ◽  
Lenette L Lu ◽  
...  

Abstract SIC1 encodes a nonessential B-type cyclin/CDK inhibitor that functions at the G1/S transition and the exit from mitosis. To understand more completely the regulation of these transitions, mutations causing synthetic lethality with sic1Δ were isolated. In this screen, we identified a novel gene, SID2, which encodes an essential protein that appears to be required for DNA replication or repair. sid2-1 sic1Δ strains and sid2-21 temperature-sensitive strains arrest preanaphase as large-budded cells with a single nucleus, a short spindle, and an ~2C DNA content. RAD9, which is necessary for the DNA damage checkpoint, is required for the preanaphase arrest of sid2-1 sic1Δ cells. Analysis of chromosomes in mutant sid2-21 cells by field inversion gel electrophoresis suggests the presence of replication forks and bubbles at the arrest. Deleting the two S phase cyclins, CLB5 and CLB6, substantially suppresses the sid2-1 sic1Δ inviability, while stabilizing Clb5 protein exacerbates the defects of sid2-1 sic1Δ cells. In synchronized sid2-1 mutant strains, the onset of replication appears normal, but completion of DNA synthesis is delayed. sid2-1 mutants are sensitive to hydroxyurea indicating that sid2-1 cells may suffer DNA damage that, when combined with additional insult, leads to a decrease in viability. Consistent with this hypothesis, sid2-1 rad9 cells are dead or very slow growing even when SIC1 is expressed.


2004 ◽  
Vol 24 (16) ◽  
pp. 6891-6899 ◽  
Author(s):  
Xuan Wang ◽  
Grzegorz Ira ◽  
José Antonio Tercero ◽  
Allyson M. Holmes ◽  
John F. X. Diffley ◽  
...  

ABSTRACT Mitotic double-strand break (DSB)-induced gene conversion involves new DNA synthesis. We have analyzed the requirement of several essential replication components, the Mcm proteins, Cdc45p, and DNA ligase I, in the DNA synthesis of Saccharomyces cerevisiae MAT switching. In an mcm7-td (temperature-inducible degron) mutant, MAT switching occurred normally when Mcm7p was degraded below the level of detection, suggesting the lack of the Mcm2-7 proteins during gene conversion. A cdc45-td mutant was also able to complete recombination. Surprisingly, even after eliminating both of the identified DNA ligases in yeast, a cdc9-1 dnl4Δ strain was able to complete DSB repair. Previous studies of asynchronous cultures carrying temperature-sensitive alleles of PCNA, DNA polymerase α (Polα), or primase showed that these mutations inhibited MAT switching (A. M. Holmes and J. E. Haber, Cell 96:415-424, 1999). We have reevaluated the roles of these proteins in G2-arrested cells. Whereas PCNA was still essential for MAT switching, neither Polα nor primase was required. These results suggest that arresting cells in S phase using ts alleles of Polα-primase, prior to inducing the DSB, sequesters some other component that is required for repair. We conclude that DNA synthesis during gene conversion is different from S-phase replication, involving only leading-strand polymerization.


2002 ◽  
Vol 22 (19) ◽  
pp. 6735-6749 ◽  
Author(s):  
Cécile Deluen ◽  
Nicole James ◽  
Laurent Maillet ◽  
Miguel Molinete ◽  
Grégory Theiler ◽  
...  

ABSTRACT The Saccharomyces cerevisiae Ccr4-Not complex is a global regulator of transcription that is thought to regulate TATA binding protein (TBP) function at certain promoters specifically. In this paper, we show interactions between the essential domain of Not1p, which interacts with Not4p and Not5p, and the N-terminal domain of yTAF1. We isolated a temperature-sensitive nonsense allele of TAF1, taf1-4, which is synthetically lethal at the permissive temperature when combined with not4 and not5 mutants and which produces high levels of a C-terminally truncated yTAF1 derivative. Overexpression of C-terminally truncated yTAF1 is toxic in not4 or not5 mutants, whereas overexpression of full-length yTAF1 suppresses not4. Furthermore, mutations in the autoinhibitory N-terminal TAND domain of yTAF1 suppress not5, and the overexpression of similar mutants does not suppress not4. We find that, like Not5p, yTAF1 acts as a repressor of stress response element-dependent transcription. Finally, we have evidence for stress-regulated occupancy of promoter DNA by Not5p and for Not5p-dependent regulation of yTAF1 association with promoter DNA. Taken together with our finding that Not1p copurifies with glutathione S-transferase-yTaf1 in large complexes, these results provide the first molecular evidence that the Ccr4-Not complex might interact with yTAF1 to regulate its association at promoters, a function that might in turn regulate the autoinhibitory N-terminal domain of yTAF1.


2002 ◽  
Vol 13 (7) ◽  
pp. 2360-2373 ◽  
Author(s):  
Akiko Fujita ◽  
Leah Vardy ◽  
Miguel Angel Garcia ◽  
Takashi Toda

γ-Tubulin functions as a multiprotein complex, called the γ-tubulin complex (γ-TuC), and composes the microtubule organizing center (MTOC). Fission yeast Alp4 and Alp6 are homologues of two conserved γ-TuC proteins, hGCP2 and hGCP3, respectively. We isolated a novel gene, alp16 + , as a multicopy suppressor of temperature-sensitive alp6-719mutants. alp16 + encodes a 759-amino-acid protein with two conserved regions found in all other members of γ-TuC components. In addition, Alp16 contains an additional motif, which shows homology to hGCP6/Xgrip210. Gene disruption shows that alp16 + is not essential for cell viability. However, alp16 deletion displays abnormally long cytoplasmic microtubules, which curve around the cell tip. Furthermore, alp16-deleted mutants are hypersensitive to microtubule-depolymerizing drugs and synthetically lethal with either temperature-sensitive alp4-225,alp4-1891, or alp6-719 mutants. Overproduction of Alp16 is lethal, with defective phenotypes very similar to loss of Alp4 or Alp6. Alp16 localizes to the spindle pole body throughout the cell cycle and to the equatorial MTOC at postanaphase. Alp16 coimmunoprecipitates with γ-tubulin and cosediments with the γ-TuC in a large complex (>20 S). Alp16 is, however, not required for the formation of this large complex. We discuss evolutional conservation and divergence of structure and function of the γ-TuC between yeast and higher eukaryotes.


1999 ◽  
Vol 112 (6) ◽  
pp. 927-937 ◽  
Author(s):  
S.W. Wang ◽  
C. Norbury ◽  
A.L. Harris ◽  
T. Toda

The replication checkpoint (or ‘S-M checkpoint’) control prevents progression into mitosis when DNA replication is incomplete. Caffeine has been known for some time to have the capacity to override the S-M checkpoint in animal cells. We show here that caffeine also disrupts the S-M checkpoint in the fission yeast Schizosaccharomyces pombe. By contrast, no comparable effects of caffeine on the S. pombe DNA damage checkpoint were seen. S. pombe cells arrested in early S phase and then exposed to caffeine lost viability rapidly as they attempted to enter mitosis, which was accompanied by tyrosine dephosphorylation of Cdc2. Despite this, the caffeine-induced loss of viability was not blocked in a temperature-sensitive cdc2 mutant incubated at the restrictive temperature, although catastrophic mitosis was prevented under these conditions. This suggests that, in addition to S-M checkpoint control, a caffeine-sensitive function may be important for maintenance of cell viability during S phase arrest. The lethality of a combination of caffeine with the DNA replication inhibitor hydroxyurea was suppressed by overexpression of Cds1 or Chk1, protein kinases previously implicated in S-M checkpoint control and recovery from S phase arrest. In addition, the same combination of drugs was specifically tolerated in cells overexpressing either of two novel S. pombe genes isolated in a cDNA library screen. These findings should allow further molecular investigation of the regulation of S phase arrest, and may provide a useful system with which to identify novel drugs that specifically abrogate the checkpoint control.


Sign in / Sign up

Export Citation Format

Share Document