scholarly journals An in Vivo Analysis of the vestigial Gene in Drosophila melanogaster Defines the Domains Required for Vg Function

Genetics ◽  
2003 ◽  
Vol 163 (4) ◽  
pp. 1365-1373 ◽  
Author(s):  
Julie O MacKay ◽  
Kelly H Soanes ◽  
Ajay Srivastava ◽  
Andrew Simmonds ◽  
William J Brook ◽  
...  

Abstract Considerable evidence indicates an obligate partnership of the Drosophila melanogaster Vestigial (VG) and Scalloped (SD) proteins within the context of wing development. These two proteins interact physically and a 56-amino-acid motif within VG is necessary and sufficient for this binding. While the importance of this SD-binding domain has been clearly demonstrated both in vitro and in vivo, the remaining portions of VG have not been examined for in vivo function. Herein, additional regions within VG were tested for possible in vivo functions. The results identify two additional domains that must be present for optimal VG function as measured by the loss of ability to rescue vg mutants, to induce ectopic sd expression, and to perform other normal VG functions when they are deleted. An in vivo study such as this one is fundamentally important because it identifies domains of VG that are necessary in the cellular context in which wing development actually occurs. The results also indicate that an additional large portion of VG, outside of these two domains and the SD-binding domain, is dispensable in the execution of these normal VG functions.

2003 ◽  
Vol 23 (12) ◽  
pp. 4083-4093 ◽  
Author(s):  
Wencheng Liu ◽  
Jeremy Seto ◽  
Etienne Sibille ◽  
Miklos Toth

ABSTRACT A deficit in the Jerky protein in mice causes recurrent seizures reminiscent of temporal lobe epilepsy. Jerky is present in mRNA particles in neurons. We show that the N-terminal 168 amino acids of Jerky are necessary and sufficient for mRNA binding. The binding domain is similar to the two tandemly arranged homeodomain-like helix-turn-helix DNA binding motifs of centromere binding protein B. The putative helix-turn-helix motifs of Jerky can also bind double-stranded DNA and represent a novel mammalian RNA/DNA binding domain. Microarray analysis identified mRNAs encoding proteins involved in ribosome assembly and cellular stress response that specifically bound to the RNA binding domain of Jerky both in vitro and in vivo. These data suggest that epileptogenesis in Jerky-deficient mice most likely involves pathways associated with ribosome biogenesis and neuronal survival and/or apoptosis.


Genome ◽  
2004 ◽  
Vol 47 (5) ◽  
pp. 849-859 ◽  
Author(s):  
Leola Chow ◽  
Joel Berube ◽  
Alice Fromont ◽  
John B Bell

Scalloped (SD) and Vestigial (VG) proteins physically interact to form a selector complex that activates genes involved in wing development in Drosophila melanogaster. SD belongs to a conserved family of transcription factors containing the TEA/ATTS DNA-binding motif. VG is also a nuclear protein providing the activator function for the SD VG complex. The TEA DNA-binding domain and the VG interacting domain (VID) of SD have been previously identified and described. However, they, and possibly other functional domains of SD, have not been thoroughly characterized in vivo. Herein, transgenic constructs encoding various truncations of SD were used to assess their respective ability to rescue the mutant wing phenotype of two viable sd recessive mutations (sdETX4 and sd58d). The transgenic strains produced were also tested for the ability to induce further sd expression, an ability possessed by full length SD. The functional dissection of SD confirms that specific regions are necessary for wing development and provides further information as to how the SD VG complex functions to promote wing fate. Previous experiments have shown that expression of full length SD can cause a dominant negative wing phenotype. We show that expression of constructs that delete the SD DNA-binding domain can also cause a dominant negative phenotype in a background with either of the two tester sd strains. In contrast, SD constructs that delete the VID have no effect on the wing phenotype in either tester background. Finally, a significant portion of SD at the N-terminal end appears to be dispensable with respect to normal wing development, as this construct behaves the same as full length SD in our assays.Key words: Drosophila melanogaster, wing, scalloped, vestigial, nuclear protein.


Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1833-1843 ◽  
Author(s):  
Ajay Srivastava ◽  
Andrew J Simmonds ◽  
Ankush Garg ◽  
Leif Fossheim ◽  
Shelagh D Campbell ◽  
...  

Abstract The Drosophila melanogaster scalloped (sd) gene is a homolog of the human TEF-1 gene and is a member of the TEA/ATTS domain-containing family of transcription factors. In Drosophila, sd is involved in wing development as well as neural development. Herein, data are presented from a molecular analysis of five recessive lethal sd alleles. Only one of these alleles complements a viable allele associated with an sd mutant wing phenotype, suggesting that functions important for wing development are compromised by the noncomplementing alleles. Two of the wing noncomplementing alleles have mutations that help to define a VG-binding domain for the SD protein in vivo, and another noncomplementing allele has a lesion within the TEA DNA-binding domain. The VG-binding domain overlaps with a domain important for viability of the fly, since two of the sd lethal lesions are located there. The fifth lethal affects a yet undefined motif lying just outside the VG-binding domain in the C-terminal direction that affects both wing phenotype and viability. This is the first example linking mutations affecting specific amino acids in the SD protein with phenotypic consequences for the organism.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1465-1475 ◽  
Author(s):  
T Kozlova ◽  
G V Pokholkova ◽  
G Tzertzinis ◽  
J D Sutherland ◽  
I F Zhimulev ◽  
...  

Abstract DHR38 is a member of the steroid receptor superfamily in Drosophila homologous to the vertebrate NGFI-B-type orphan receptors. In addition to binding to specific response elements as a monomer, DHR38 interacts with the USP component of the ecdysone receptor complex in vitro, in yeast and in a cell line, suggesting that DHR38 might modulate ecdysone-triggered signals in the fly. We characterized the molecular structure and expression of the Dhr38 gene and initiated an in vivo analysis of its function(s) in development. The Dhr38 transcription unit spans more than 40 kb in length, includes four introns, and produces at least four mRNA isoforms differentially expressed in development; two of these are greatly enriched in the pupal stage and encode nested polypeptides. We characterized four alleles of Dhr38: a P-element enchancer trap line, l(2)02306, which shows exclusively epidermal staining in the late larval, pre-pupal and pupal stages, and three EMS-induced alleles. Dhr38 alleles cause localized fragility and rupturing of the adult cuticle, demonstrating that Dhr38 plays an important role in late stages of epidermal metamorphosis.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2543
Author(s):  
Ruidong Ni ◽  
Suzeeta Bhandari ◽  
Perry R. Mitchell ◽  
Gabriela Suarez ◽  
Neel B. Patel ◽  
...  

Fatty acid amides are a diverse family of underappreciated, biologically occurring lipids. Herein, the methods for the chemical synthesis and subsequent characterization of specific members of the fatty acid amide family are described. The synthetically prepared fatty acid amides and those obtained commercially are used as standards for the characterization and quantification of the fatty acid amides produced by biological systems, a fatty acid amidome. The fatty acid amidomes from mouse N18TG2 cells, sheep choroid plexus cells, Drosophila melanogaster, Bombyx mori, Apis mellifera, and Tribolium castaneum are presented.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2198
Author(s):  
Marcos Mateo-Fernández ◽  
Fernando Valenzuela-Gómez ◽  
Rafael Font ◽  
Mercedes Del Río-Celestino ◽  
Tania Merinas-Amo ◽  
...  

Taurine is one of the main ingredients used in energy drinks which are highly consumed in adolescents for their sugary taste and stimulating effect. With energy drinks becoming a worldwide phenomenon, the biological effects of these beverages must be evaluated in order to fully comprehend the potential impact of these products on the health due to the fact nutrition is closely related to science since the population consumes food to prevent certain diseases. Therefore, the aim of this study was to evaluate the biological effects of taurine, glucose, classic Red Bull® and sugar-free Red Bull® in order to check the food safety and the nutraceutical potential of these compounds, characterising different endpoints: (i) Toxicology, antitoxicology, genotoxicology and life expectancy assays were performed in the Drosophila melanogaster model organism; (ii) The in vitro chemopreventive activity of testing compounds was determined by assessing their cytotoxicity, the proapoptotic DNA-damage capability to induce internucleosomal fragmentation, the strand breaks activity and the modulator role on the methylation status of genomic repetitive sequences of HL-60 promyelocytic cells. Whereas none tested compounds showed toxic or genotoxic effect, all tested compounds exerted antitoxic and antigenotoxic activity in Drosophila. Glucose, classic Red Bull® and sugar-free Red Bull® were cytotoxic in HL-60 cell line. Classic Red Bull® induced DNA internucleosomal fragmentation although none of them exhibited DNA damage on human leukaemia cells. In conclusion, the tested compounds are safe on Drosophila melanogaster and classic Red Bull® could overall possess nutraceutical potential in the in vivo and in vitro model used in this study. Besides, taurine could holistically be one of the bioactive compounds responsible for the biological activity of classic Red Bull®.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 453
Author(s):  
Ana Filošević Vujnović ◽  
Katarina Jović ◽  
Emanuel Pištan ◽  
Rozi Andretić Waldowski

Non-enzymatic glycation and covalent modification of proteins leads to Advanced Glycation End products (AGEs). AGEs are biomarkers of aging and neurodegenerative disease, and can be induced by impaired neuronal signaling. The objective of this study was to investigate if manipulation of dopamine (DA) in vitro using the model protein, bovine serum albumin (BSA), and in vivo using the model organism Drosophila melanogaster, influences fluorescent AGEs (fAGEs) formation as an indicator of dopamine-induced oxidation events. DA inhibited fAGEs-BSA synthesis in vitro, suggesting an anti-oxidative effect, which was not observed when flies were fed DA. Feeding flies cocaine and methamphetamine led to increased fAGEs formation. Mutants lacking the dopaminergic transporter or the D1-type showed further elevation of fAGEs accumulation, indicating that the long-term perturbation in DA function leads to higher production of fAGEs. To confirm that DA has oxidative properties in vivo, we fed flies antioxidant quercetin (QUE) together with methamphetamine. QUE significantly decreased methamphetamine-induced fAGEs formation suggesting that the perturbation of DA function in vivo leads to increased oxidation. These findings present arguments for the use of fAGEs as a biomarker of DA-associated neurodegenerative changes and for assessment of antioxidant interventions such as QUE treatment.


Genetics ◽  
1982 ◽  
Vol 100 (2) ◽  
pp. 259-278
Author(s):  
Hideo Tsuji

ABSTRACT Sister chromatid exchanges (SCEs) under in vivo and in vitro conditions were examined in ganglion cells of third-instar larvae of Drosophila melanogaster (Oregon-R). In the in vivo experiment, third-instar larvae were fed on synthetic media containing 5-bromo-2′-deoxyuridine (BrdUrd). After two cell cycles, ganglia were dissected and treated with colchicine. In the in vitro experiment, the ganglia were also incubated in media containing BrdUrd for two cell cycles, and treated with colchicine. SCEs were scored in metaphase stained with Hoechst 33258 plus Giemsa. The frequencies of SCEs stayed constant in the range of 25-150 vg/ml and 0.25-2.5 vg/ml of BrdUrd in vivo and in vitro, respectively. SCEs gradually increased at higher concentrations, strongly suggesting that at least a fraction of the detected SCEs are spontaneous. The constant levels of SCE frequency were estimated, on the average, at 0.103 per cell per two cell cycles for females and 0.101 for males in vivo and at 0.096 for females and 0.091 for males in vitro. No difference was found in the SCE frequency between sexes at any of the BrdUrd concentrations. The analysis for the distribution of SCEs within chromosomes revealed an extraordinarily high proportion of the SCEs at the junctions between euchromatin and heterochromatin; the remaining SCEs were preferentially localized in the euchromatic regions of the chromosomes and in the heterochromatic Y chromosome. These results were largely inconsistent with those of Gatti et al. (1979).


Sign in / Sign up

Export Citation Format

Share Document