scholarly journals The Contribution of Genetic Diversity to the Spread of Infectious Diseases in Livestock Populations

Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1465-1474
Author(s):  
A J Springbett ◽  
K MacKenzie ◽  
J A Woolliams ◽  
S C Bishop

Abstract This article uses stochastic simulations with a compartmental epidemic model to quantify the impact of genetic diversity within animal populations on the transmission of infectious disease. Genetic diversity is defined by the number of distinct genotypes in the population conferring resistance to microparasitic (e.g., viral or bacterial) infections. Scenarios include homogeneous populations and populations composed of few (finite-locus model) or many (infinitesimal model) genotypes. Genetic heterogeneity has no impact upon the expected value of the basic reproductive ratio (the primary description of the transmission of infection) but affects the variability of this parameter. Consequently, increasing genetic heterogeneity is associated with an increased probability of minor epidemics and decreased probabilities of both major (catastrophic) epidemics and no epidemics. Additionally, heterogeneity per se is associated with a breakdown in the expected relationship between the basic reproductive ratio and epidemic severity, which has been developed for homogeneous populations, with increasing heterogeneity generally resulting in fewer infected animals than expected. Furthermore, increased heterogeneity is associated with decreased disease-dependent mortality in major epidemics and a complex trend toward decreased duration of these epidemics. In summary, more heterogeneous populations are not expected to suffer fewer epidemics on average, but are less likely to suffer catastrophic epidemics.

2005 ◽  
Vol 1 (4) ◽  
pp. 423-426 ◽  
Author(s):  
Yvonne L Chan ◽  
Eileen A Lacey ◽  
Oliver P Pearson ◽  
Elizabeth A Hadly

Understanding how animal populations have evolved in response to palaeoenvironmental conditions is essential for predicting the impact of future environmental change on current biodiversity. Analyses of ancient DNA provide a unique opportunity to track population responses to prehistoric environments. We explored the effects of palaeoenvironmental change on the colonial tuco-tuco ( Ctenomys sociabilis ), a highly endemic species of Patagonian rodent that is currently listed as threatened by the IUCN. By combining surveys of modern genetic variation from throughout this species' current geographic range with analyses of DNA samples from fossil material dating back to 10 000 ybp, we demonstrate a striking decline in genetic diversity that is concordant with environmental events in the study region. Our results highlight the importance of non-anthropogenic factors in loss of diversity, including reductions in smaller mammals such as rodents.


2005 ◽  
Vol 26 (2) ◽  
pp. 76 ◽  
Author(s):  
Inger-Marie Vilcins ◽  
Julie M Old ◽  
Elizabeth M Deane

Ectoparasites are a leading cause of arthropod-borne disease in animals, and humans. Defined as arthropods which spend an entire portion of their life cycle on the host, ectoparasites include the ticks and mites (Acarina), and the lice and fleas of the insect family. Their role in human disease transmission has been well documented, as has their importance in agricultural and domestic animals. Little however has been done to comprehensively examine the role these organisms may play in disease transmission and their impact upon native Australian fauna. It is important to consider the effects of such disease agents on the survival of both captive and wild native animal populations, particularly as exposure to a novel pathogen may remove endangered animals that are a vital pool of genetic diversity.


2020 ◽  
Author(s):  
Aaron J. Sams ◽  
Brett Ford ◽  
Adam Gardner ◽  
Adam R. Boyko

ABSTRACTIn many ways dogs are an ideal model for the study of genetic erosion and population recovery, problems of major concern in the field of conservation genetics. Genetic diversity in many dog breeds has been declining systematically since the beginning of the 1800’s, when modern breeding practices came into fashion. As such, inbreeding in domestic dog breeds is substantial and widespread and has led to an increase in recessive deleterious mutations of high effect as well as general inbreeding depression. Pedigrees can in theory be used to guide breeding decisions, though are often incomplete and do not reflect the full history of inbreeding. Small microsatellite panels are also used in some cases to choose mating pairs to produce litters with low levels of inbreeding. However, the long-term impact of such practices have not been thoroughly evaluated. Here, we use forward simulation on a model of the dog genome to examine the impact of using limited markers panels to guide pairwise mating decisions on genome-wide population level genetic diversity. Our results suggest that in unsupervised mating schemes, where breeding decisions are made at the pairwise-rather than population-level, such panels can lead to accelerated loss of genetic diversity compared to random mating at regions of the genome unlinked to panel markers and demonstrate the importance of genome-wide genetic panels for managing and conserving genetic diversity in dogs and other companion animals.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lucy J. H. Garrett ◽  
Julia P. Myatt ◽  
Jon P. Sadler ◽  
Deborah A. Dawson ◽  
Helen Hipperson ◽  
...  

AbstractWhen and where animals breed can shape the genetic structure and diversity of animal populations. The importance of drivers of genetic diversity is amplified in island populations that tend to have more delineated gene pools compared to continental populations. Studies of relatedness as a function of the spatial distribution of individuals have demonstrated the importance of spatial organisation for individual fitness with outcomes that are conditional on the overall genetic diversity of the population. However, few studies have investigated the impact of breeding timing on genetic structure. We characterise the fine-scale genetic structure of a geographically-isolated population of seabirds. Microsatellite markers provide evidence for largely transient within-breeding season temporal processes and limited spatial processes, affecting genetic structure in an otherwise panmictic population of sooty terns Onychoprion fuscatus. Earliest breeders had significantly different genetic structure from the latest breeders. Limited evidence was found for localised spatial structure, with a small number of individuals being more related to their nearest neighbours than the rest of the population. Therefore, population genetic structure is shaped by heterogeneities in collective movement in time and to a lesser extent space, that result in low levels of spatio-temporal genetic structure and the maintenance of genetic diversity.


Erdkunde ◽  
2020 ◽  
Vol 74 (3) ◽  
pp. 191-204
Author(s):  
Marcus Hübscher ◽  
Juana Schulze ◽  
Felix zur Lage ◽  
Johannes Ringel

Short-term rentals such as Airbnb have become a persistent element of today’s urbanism around the globe. The impacts are manifold and differ depending on the context. In cities with a traditionally smaller accommodation market, the impacts might be particularly strong, as Airbnb contributes to ongoing touristification processes. Despite that, small and medium-sized cities have not been in the centre of research so far. This paper focuses on Santa Cruz de Tenerife as a medium-sized Spanish city. Although embedded in the touristic region of the Canary Islands, Santa Cruz is not a tourist city per se but still relies on touristification strategies. This paper aims to expand the knowledge of Airbnb’s spatial patterns in this type of city. The use of data collected from web scraping and geographic information systems (GIS) demonstrates that Airbnb has opened up new tourism markets outside of the centrally established tourist accommodations. It also shows that the price gap between Airbnb and the housing rental market is broadest in neighbourhoods that had not experienced tourism before Airbnb entered the market. In the centre the highest prices and the smallest units are identified, but two peripheral quarters stand out. Anaga Mountains, a natural and rural space, has the highest numbers of Airbnb listings per capita. Suroeste, a suburban quarter, shows the highest growth rates on the rental market, which implies a linkage between Airbnb and suburbanization processes.


Author(s):  
Valentin Sencio ◽  
Marina Gomes Machado ◽  
François Trottein

AbstractBacteria that colonize the human gastrointestinal tract are essential for good health. The gut microbiota has a critical role in pulmonary immunity and host’s defense against viral respiratory infections. The gut microbiota’s composition and function can be profoundly affected in many disease settings, including acute infections, and these changes can aggravate the severity of the disease. Here, we discuss mechanisms by which the gut microbiota arms the lung to control viral respiratory infections. We summarize the impact of viral respiratory infections on the gut microbiota and discuss the potential mechanisms leading to alterations of gut microbiota’s composition and functions. We also discuss the effects of gut microbial imbalance on disease outcomes, including gastrointestinal disorders and secondary bacterial infections. Lastly, we discuss the potential role of the lung–gut axis in coronavirus disease 2019.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Emmanuel A. Lozada-Soto ◽  
Christian Maltecca ◽  
Duc Lu ◽  
Stephen Miller ◽  
John B. Cole ◽  
...  

Abstract Background While the adoption of genomic evaluations in livestock has increased genetic gain rates, its effects on genetic diversity and accumulation of inbreeding have raised concerns in cattle populations. Increased inbreeding may affect fitness and decrease the mean performance for economically important traits, such as fertility and growth in beef cattle, with the age of inbreeding having a possible effect on the magnitude of inbreeding depression. The purpose of this study was to determine changes in genetic diversity as a result of the implementation of genomic selection in Angus cattle and quantify potential inbreeding depression effects of total pedigree and genomic inbreeding, and also to investigate the impact of recent and ancient inbreeding. Results We found that the yearly rate of inbreeding accumulation remained similar in sires and decreased significantly in dams since the implementation of genomic selection. Other measures such as effective population size and the effective number of chromosome segments show little evidence of a detrimental effect of using genomic selection strategies on the genetic diversity of beef cattle. We also quantified pedigree and genomic inbreeding depression for fertility and growth. While inbreeding did not affect fertility, an increase in pedigree or genomic inbreeding was associated with decreased birth weight, weaning weight, and post-weaning gain in both sexes. We also measured the impact of the age of inbreeding and found that recent inbreeding had a larger depressive effect on growth than ancient inbreeding. Conclusions In this study, we sought to quantify and understand the possible consequences of genomic selection on the genetic diversity of American Angus cattle. In both sires and dams, we found that, generally, genomic selection resulted in decreased rates of pedigree and genomic inbreeding accumulation and increased or sustained effective population sizes and number of independently segregating chromosome segments. We also found significant depressive effects of inbreeding accumulation on economically important growth traits, particularly with genomic and recent inbreeding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nathaniel B. Bone ◽  
Eugene J. Becker ◽  
Maroof Husain ◽  
Shaoning Jiang ◽  
Anna A. Zmijewska ◽  
...  

AbstractMetabolic and bioenergetic plasticity of immune cells is essential for optimal responses to bacterial infections. AMPK and Parkin ubiquitin ligase are known to regulate mitochondrial quality control mitophagy that prevents unwanted inflammatory responses. However, it is not known if this evolutionarily conserved mechanism has been coopted by the host immune defense to eradicate bacterial pathogens and influence post-sepsis immunosuppression. Parkin, AMPK levels, and the effects of AMPK activators were investigated in human leukocytes from sepsis survivors as well as wild type and Park2−/− murine macrophages. In vivo, the impact of AMPK and Parkin was determined in mice subjected to polymicrobial intra-abdominal sepsis and secondary lung bacterial infections. Mice were treated with metformin during established immunosuppression. We showed that bacteria and mitochondria share mechanisms of autophagic killing/clearance triggered by sentinel events that involve depolarization of mitochondria and recruitment of Parkin in macrophages. Parkin-deficient mice/macrophages fail to form phagolysosomes and kill bacteria. This impairment of host defense is seen in the context of sepsis-induced immunosuppression with decreased levels of Parkin. AMPK activators, including metformin, stimulate Parkin-independent autophagy and bacterial killing in leukocytes from post-shock patients and in lungs of sepsis-immunosuppressed mice. Our results support a dual role of Parkin and AMPK in the clearance of dysfunctional mitochondria and killing of pathogenic bacteria, and explain the immunosuppressive phenotype associated Parkin and AMPK deficiency. AMPK activation appeared to be a crucial therapeutic target for the macrophage immunosuppressive phenotype and to reduce severity of secondary bacterial lung infections and respiratory failure.


Coral Reefs ◽  
2021 ◽  
Author(s):  
Gabriele Gerlach ◽  
Philipp Kraemer ◽  
Peggy Weist ◽  
Laura Eickelmann ◽  
Michael J. Kingsford

AbstractCyclones have one of the greatest effects on the biodiversity of coral reefs and the associated species. But it is unknown how stochastic alterations in habitat structure influence metapopulation structure, connectivity and genetic diversity. From 1993 to 2018, the reefs of the Capricorn Bunker Reef group in the southern part of the Great Barrier Reef were impacted by three tropical cyclones including cyclone Hamish (2009, category 5). This resulted in substantial loss of live habitat-forming coral and coral reef fish communities. Within 6–8 years after cyclones had devastated, live hard corals recovered by 50–60%. We show the relationship between hard coral cover and the abundance of the neon damselfish (Pomacentrus coelestis), the first fish colonizing destroyed reefs. We present the first long-term (2008–2015 years corresponding to 16–24 generations of P. coelestis) population genetic study to understand the impact of cyclones on the meta-population structure, connectivity and genetic diversity of the neon damselfish. After the cyclone, we observed the largest change in the genetic structure at reef populations compared to other years. Simultaneously, allelic richness of genetic microsatellite markers dropped indicating a great loss of genetic diversity, which increased again in subsequent years. Over years, metapopulation dynamics were characterized by high connectivity among fish populations associated with the Capricorn Bunker reefs (2200 km2); however, despite high exchange, genetic patchiness was observed with annual strong genetic divergence between populations among reefs. Some broad similarities in the genetic structure in 2015 could be explained by dispersal from a source reef and the related expansion of local populations. This study has shown that alternating cyclone-driven changes and subsequent recovery phases of coral habitat can greatly influence patterns of reef fish connectivity. The frequency of disturbances determines abundance of fish and genetic diversity within species.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 335
Author(s):  
Anssi Karvonen ◽  
Ville Räihä ◽  
Ines Klemme ◽  
Roghaieh Ashrafi ◽  
Pekka Hyvärinen ◽  
...  

Environmental heterogeneity is a central component influencing the virulence and epidemiology of infectious diseases. The number and distribution of susceptible hosts determines disease transmission opportunities, shifting the epidemiological threshold between the spread and fadeout of a disease. Similarly, the presence and diversity of other hosts, pathogens and environmental microbes, may inhibit or accelerate an epidemic. This has important applied implications in farming environments, where high numbers of susceptible hosts are maintained in conditions of minimal environmental heterogeneity. We investigated how the quantity and quality of aquaculture enrichments (few vs. many stones; clean stones vs. stones conditioned in lake water) influenced the severity of infection of a pathogenic bacterium, Flavobacterium columnare, in salmonid fishes. We found that the conditioning of the stones significantly increased host survival in rearing tanks with few stones. A similar effect of increased host survival was also observed with a higher number of unconditioned stones. These results suggest that a simple increase in the heterogeneity of aquaculture environment can significantly reduce the impact of diseases, most likely operating through a reduction in pathogen transmission (stone quantity) and the formation of beneficial microbial communities (stone quality). This supports enriched rearing as an ecological and economic way to prevent bacterial infections with the minimal use of antimicrobials.


Sign in / Sign up

Export Citation Format

Share Document