scholarly journals Architectural Mediator subunits are differentially essential for global transcription in Saccharomyces cerevisiae

Genetics ◽  
2021 ◽  
Author(s):  
Jason P Tourigny ◽  
Kenny Schumacher ◽  
Moustafa M Saleh ◽  
Didier Devys ◽  
Gabriel E Zentner

Abstract Mediator is a modular coactivator complex involved in the transcription of the majority of RNA polymerase II-regulated genes. However, the degrees to which individual core subunits of Mediator contribute to its activity have been unclear. Here, we investigate the contribution of two essential architectural subunits of Mediator to transcription in Saccharomyces cerevisiae. We show that acute depletion of the main complex scaffold Med14 or the head module nucleator Med17 is lethal and results in global transcriptional downregulation, though Med17 removal has a markedly greater negative effect. Consistent with this, Med17 depletion impairs preinitiation complex (PIC) assembly to a greater extent than Med14 removal. Co-depletion of Med14 and Med17 reduced transcription and TFIIB promoter occupancy similarly to Med17 ablation alone, indicating that the contributions of Med14 and Med17 to Mediator function are not additive. We propose that, while the structural integrity of complete Mediator and the head module are both important for PIC assembly and transcription, the head module plays a greater role in this process and is thus the key functional module of Mediator in this regard.

2020 ◽  
Author(s):  
Jason P. Tourigny ◽  
Kenny Schumacher ◽  
Didier Devys ◽  
Gabriel E. Zentner

SummaryThe modular Mediator complex is a coactivator of RNA polymerase II transcription. We show that depletion of the main complex scaffold Med14 or the head module scaffold Med17 is lethal and results in global transcriptional downregulation in yeast, though Med17 removal has a markedly greater negative effect. Depletion of Med14 or Med17 impairs pre-initiation complex (PIC) assembly similarly, suggesting that the differential transcriptional effects observed are not due to differing extents of defective PIC formation. Co-depletion of Med14 and Med17 reduced transcription and TFIIB promoter occupancy similarly to Med17 ablation alone, suggesting that the independent head module can weakly stimulate transcription in vivo, though not to a level that maintains viability. We suggest that, while the structural integrity of complete Mediator and the head module are both important for PIC assembly, the head module additionally promotes optimal PIC function and is thus the key functional module of Mediator in this regard.


Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 737-747 ◽  
Author(s):  
Jacques Archambault ◽  
David B Jansma ◽  
James D Friesen

Abstract In the yeast Saccharomyces cerevisiae, mutations in genes encoding subunits of RNA polymerase II (RNAPII) often give rise to a set of pleiotropic phenotypes that includes temperature sensitivity, slow growth and inositol auxotrophy. In this study, we show that these phenotypes can be brought about by a reduction in the intracellular concentration of RNAPII. Underproduction of RNAPII was achieved by expressing the gene (RPO21), encoding the largest subunit of the enzyme, from the LEU2 promoter or a weaker derivative of it, two promoters that can be repressed by the addition of leucine to the growth medium. We found that cells that underproduced RPO21 were unable to derepress fully the expression of a reporter gene under the control of the INO1 UAS. Our results indicate that temperature sensitivity, slow growth and inositol auxotrophy is a set of phenotypes that can be caused by lowering the steady-state amount of RNAPII; these results also lead to the prediction that some of the previously identified RNAPII mutations that confer this same set of phenotypes affect the assembly/stability of the enzyme. We propose a model to explain the hypersensitivity of INO1 transcription to mutations that affect components of the RNAPII transcriptional machinery.


Genetics ◽  
2001 ◽  
Vol 157 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Ya-Wen Chang ◽  
Susie C Howard ◽  
Yelena V Budovskaya ◽  
Jasper Rine ◽  
Paul K Herman

Abstract Saccharomyces cerevisiae cells enter into a distinct resting state, known as stationary phase, in response to specific types of nutrient deprivation. We have identified a collection of mutants that exhibited a defective transcriptional response to nutrient limitation and failed to enter into a normal stationary phase. These rye mutants were isolated on the basis of defects in the regulation of YGP1 expression. In wild-type cells, YGP1 levels increased during the growth arrest caused by nutrient deprivation or inactivation of the Ras signaling pathway. In contrast, the levels of YGP1 and related genes were significantly elevated in the rye mutants during log phase growth. The rye defects were not specific to this YGP1 response as these mutants also exhibited multiple defects in stationary phase properties, including an inability to survive periods of prolonged starvation. These data indicated that the RYE genes might encode important regulators of yeast cell growth. Interestingly, three of the RYE genes encoded the Ssn/Srb proteins, Srb9p, Srb10p, and Srb11p, which are associated with the RNA polymerase II holoenzyme. Thus, the RNA polymerase II holoenzyme may be a target of the signaling pathways responsible for coordinating yeast cell growth with nutrient availability.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1059-1070
Author(s):  
Susie C Howard ◽  
Arelis Hester ◽  
Paul K Herman

Abstract The Ras signaling pathway in Saccharomyces cerevisiae controls cell growth via the cAMP-dependent protein kinase, PKA. Recent work has indicated that these effects on growth are due, in part, to the regulation of activities associated with the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. However, the precise target of these Ras effects has remained unknown. This study suggests that Ras/PKA activity regulates the elongation step of the RNA polymerase II transcription process. Several lines of evidence indicate that Spt5p in the Spt4p/Spt5p elongation factor is the likely target of this control. First, the growth of spt4 and spt5 mutants was found to be very sensitive to changes in Ras/PKA signaling activity. Second, mutants with elevated levels of Ras activity shared a number of specific phenotypes with spt5 mutants and vice versa. Finally, Spt5p was efficiently phosphorylated by PKA in vitro. Altogether, the data suggest that the Ras/PKA pathway might be directly targeting a component of the elongating polymerase complex and that this regulation is important for the normal control of yeast cell growth. These data point out the interesting possibility that signal transduction pathways might directly influence the elongation step of RNA polymerase II transcription.


2014 ◽  
Vol 25 (12) ◽  
pp. 1916-1924 ◽  
Author(s):  
David Öling ◽  
Rehan Masoom ◽  
Kristian Kvint

Ubp3 is a conserved ubiquitin protease that acts as an antisilencing factor in MAT and telomeric regions. Here we show that ubp3∆ mutants also display increased silencing in ribosomal DNA (rDNA). Consistent with this, RNA polymerase II occupancy is lower in cells lacking Ubp3 than in wild-type cells in all heterochromatic regions. Moreover, in a ubp3∆ mutant, unequal recombination in rDNA is highly suppressed. We present genetic evidence that this effect on rDNA recombination, but not silencing, is entirely dependent on the silencing factor Sir2. Further, ubp3∆ sir2∆ mutants age prematurely at the same rate as sir2∆ mutants. Thus our data suggest that recombination negatively influences replicative life span more so than silencing. However, in ubp3∆ mutants, recombination is not a prerequisite for aging, since cells lacking Ubp3 have a shorter life span than isogenic wild-type cells. We discuss the data in view of different models on how silencing and unequal recombination affect replicative life span and the role of Ubp3 in these processes.


1990 ◽  
Vol 10 (5) ◽  
pp. 1908-1914
Author(s):  
C Martin ◽  
S Okamura ◽  
R Young

The two large subunits of RNA polymerase II, RPB1 and RPB2, contain regions of extensive homology to the two large subunits of Escherichia coli RNA polymerase. These homologous regions may represent separate protein domains with unique functions. We investigated whether suppressor genetics could provide evidence for interactions between specific segments of RPB1 and RPB2 in Saccharomyces cerevisiae. A plasmid shuffle method was used to screen thoroughly for mutations in RPB2 that suppress a temperature-sensitive mutation, rpb1-1, which is located in region H of RPB1. All six RPB2 mutations that suppress rpb1-1 were clustered in region I of RPB2. The location of these mutations and the observation that they were allele specific for suppression of rpb1-1 suggests an interaction between region H of RPB1 and region I of RPB2. A similar experiment was done to isolate and map mutations in RPB1 that suppress a temperature-sensitive mutation, rpb2-2, which occurs in region I of RPB2. These suppressor mutations were not clustered in a particular region. Thus, fine structure suppressor genetics can provide evidence for interactions between specific segments of two proteins, but the results of this type of analysis can depend on the conditional mutation to be suppressed.


2004 ◽  
Vol 24 (18) ◽  
pp. 8227-8235 ◽  
Author(s):  
Vardit Dror ◽  
Fred Winston

ABSTRACT The Swi/Snf chromatin remodeling complex has been previously demonstrated to be required for transcriptional activation and repression of a subset of genes in Saccharomyces cerevisiae. In this work we demonstrate that Swi/Snf is also required for repression of RNA polymerase II-dependent transcription in the ribosomal DNA (rDNA) locus (rDNA silencing). This repression appears to be independent of both Sir2 and Set1, two factors known to be required for rDNA silencing. In contrast to many other rDNA silencing mutants that have elevated levels of rDNA recombination, snf2Δ mutants have a significantly decreased level of rDNA recombination. Additional studies have demonstrated that Swi/Snf is also required for silencing of genes near telomeres while having no detectable effect on silencing of HML or HMR.


Sign in / Sign up

Export Citation Format

Share Document