scholarly journals Skeletal Muscle Mitochondrial Adaptations to Maximal Strength Training in Older Adults

2020 ◽  
Vol 75 (12) ◽  
pp. 2269-2277
Author(s):  
Ole Kristian Berg ◽  
Oh Sung Kwon ◽  
Thomas J Hureau ◽  
Heather L Clifton ◽  
Taylor S Thurston ◽  
...  

Abstract Maximal strength training (MST) results in robust improvements in skeletal muscle force production, efficiency, and mass. However, the effects of MST on muscle mitochondria are still unknown. Accordingly, the purpose of this study was to examine, from the molecular level to whole-muscle, mitochondrial adaptations induced by 8 weeks of knee-extension MST in the quadriceps of 10 older adults using immunoblotting, spectrophotometry, high-resolution respirometry in permeabilized muscle fibers, in vivo 31P magnetic resonance spectroscopy (31P-MRS), and gas exchange. As anticipated, MST resulted in an increased isometric knee-extensor force from 133 ± 36 to 147 ± 49 Nm (p < .05) and quadriceps muscle volume from 1,410 ± 103 to 1,555 ± 455 cm3 (p < .05). Mitochondrial complex (I–V) protein abundance and citrate synthase activity were not significantly altered by MST. Assessed ex vivo, maximal ADP-stimulated respiration (state 3CI+CII, PRE: 23 ± 6 and POST: 14 ± 5 ρM·mg−1·s−1, p < .05), was decreased by MST, predominantly, as a result of a decline in complex I-linked respiration (p < .05). Additionally, state 3 free-fatty acid linked respiration was decreased following MST (PRE: 19 ± 5 and POST: 14 ± 3 ρM·mg−1·s−1, p < .05). Assessed in vivo, MST slowed the PCr recovery time constant (PRE: 49 ± 13 and POST: 57 ± 16 seconds, p < .05) and lowered, by ~20% (p = .055), the quadriceps peak rate of oxidative ATP synthesis, but did not significantly alter the oxidation of lipid. Although these, likely qualitative, mitochondrial adaptations are potentially negative in terms of skeletal muscle energetic capacity, they need to be considered in light of the many improvements in muscle function that MST affords older adults.

2012 ◽  
Vol 113 (5) ◽  
pp. 808-816 ◽  
Author(s):  
Su Xu ◽  
Stephen J. P. Pratt ◽  
Espen E. Spangenburg ◽  
Richard M. Lovering

Skeletal muscle injury is often assessed by clinical findings (history, pain, tenderness, strength loss), by imaging, or by invasive techniques. The purpose of this work was to determine if in vivo proton magnetic resonance spectroscopy (1H MRS) could reveal metabolic changes in murine skeletal muscle after contraction-induced injury. We compared findings in the tibialis anterior muscle from both healthy wild-type (WT) muscles (C57BL/10 mice) and dystrophic ( mdx mice) muscles (an animal model for human Duchenne muscular dystrophy) before and after contraction-induced injury. A mild in vivo eccentric injury protocol was used due to the high susceptibility of mdx muscles to injury. As expected, mdx mice sustained a greater loss of force (81%) after injury compared with WT (42%). In the uninjured muscles, choline (Cho) levels were 47% lower in the mdx muscles compared with WT muscles. In mdx mice, taurine levels decreased 17%, and Cho levels increased 25% in injured muscles compared with uninjured mdx muscles. Intramyocellular lipids and total muscle lipid levels increased significantly after injury but only in WT. The increase in lipid was confirmed using a permeable lipophilic fluorescence dye. In summary, loss of torque after injury was associated with alterations in muscle metabolite levels that may contribute to the overall injury response in mdx mice. These results show that it is possible to obtain meaningful in vivo 1H MRS regarding skeletal muscle injury.


1999 ◽  
Vol 58 (4) ◽  
pp. 861-870 ◽  
Author(s):  
A. Heerschap ◽  
C. Houtman ◽  
H. J. A. in 't Zandt ◽  
A. J. van den Bergh ◽  
B. Wieringa

31P magnetic resonance spectroscopy (MRS) offers a unique non-invasive window on energy metabolism in skeletal muscle, with possibilities for longitudinal studies and of obtaining important bioenergetic data continuously and with sufficient time resolution during muscle exercise. The present paper provides an introductory overview of the current status of in vivo31P MRS of skeletal muscle, focusing on human applications, but with some illustrative examples from studies on transgenic mice. Topics which are described in the present paper are the information content of the 31P magnetic resonance spectrum of skeletal muscle, some practical issues in the performance of this MRS methodology, related muscle biochemistry and the validity of interpreting results in terms of biochemical processes, the possibility of investigating reaction kinetics in vivo and some indications for fibre-type heterogeneity as seen in spectra obtained during exercise.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 930 ◽  
Author(s):  
D. Travis Thomas ◽  
David M. Schnell ◽  
Maja Redzic ◽  
Mingjun Zhao ◽  
Hideat Abraha ◽  
...  

Intramyocellular (IMCL), extramyocellular lipid (EMCL), and vitamin D deficiency are associated with muscle metabolic dysfunction. This study compared the change in [IMCL]:[EMCL] following the combined treatment of vitamin D and aerobic training (DAT) compared with vitamin D (D), aerobic training (AT), and control (CTL). Male and female subjects aged 60–80 years with a BMI ranging from 18.5–34.9 and vitamin D status of ≤32 ng/mL (25(OH)D) were recruited to randomized, prospective clinical trial double-blinded for supplement with a 2 × 2 factorial design. Cholecalciferol (Vitamin D3) (10,000 IU × 5 days/week) or placebo was provided for 13 weeks and treadmill aerobic training during week 13. Gastrocnemius IMCL and EMCL were measured with magnetic resonance spectroscopy (MRS) and MRI. Hybrid near-infrared diffuse correlation spectroscopy measured hemodynamics. Group differences in IMCL were observed when controlling for baseline IMCL (p = 0.049). DAT was the only group to reduce IMCL from baseline, while a mean increase was observed in all other groups combined (p = 0.008). IMCL reduction and the corresponding increase in rVO2 at study end (p = 0.011) were unique to DAT. Vitamin D, when combined with exercise, may potentiate the metabolic benefits of exercise by reducing IMCL and increasing tissue-level VO2 in healthy, older adults.


2020 ◽  
Vol 98 (10) ◽  
Author(s):  
Randi N Owen ◽  
Christine M Latham ◽  
Charles R Long ◽  
Ronald D Randel ◽  
Thomas H Welsh ◽  
...  

Abstract Temperamental cattle tend to yield carcasses of poorer quality, and Brahman cattle are reportedly more temperamental than non-indicus cattle breeds. A potential link between temperament and product quality may be mitochondrial activity. We hypothesized that mitochondrial measures would be greater in temperamental compared with calm heifers and that the relationships between temperament and mitochondria would persist as heifers age. Serum cortisol and skeletal muscle (longissimus thoracis [LT] and trapezius [TRAP]) mitochondrial profiles and antioxidant activities were quantified from the same calm (n = 6) and temperamental (n = 6) Brahman heifers at 8, 12, and 18 mo of age. Data were analyzed using a mixed model ANOVA in SAS (9.4) with repeated measures. Serum cortisol was greater in temperamental compared with calm heifers throughout the study (P = 0.02). Mitochondrial volume density (citrate synthase [CS] activity) increased over time (P < 0.0001) but was similar between temperament and muscle groups. Mitochondrial function (cytochrome c oxidase activity) was greatest in the temperamental LT at 8 mo of age (P ≤ 0.0006), greatest in the temperamental TRAP at 18 mo of age (P ≤ 0.003), and did not differ by temperament at 12 mo of age. Integrative (relative to tissue wet weight) mitochondrial oxidative phosphorylation capacity with complex I substrates (PCI), PCI plus complex II substrate (PCI+II), noncoupled electron transfer system capacity (ECI+II), and E with functional complex II only (ECII) were greater in the TRAP than LT for calm heifers at all ages (P ≤ 0.002), but were similar between muscle groups in temperamental heifers. Overall, calm heifers tended to have greater intrinsic (relative to CS activity) PCI and flux control of PCI+II (P ≤ 0.1) than temperamental heifers, indicating greater utilization of complex I paired with greater coupling efficiency in calm heifers. Within the LT, integrative PCI+II was greater (P = 0.05) and ECI+II tended to be greater (P = 0.06) in temperamental compared with calm heifers. From 8- to 18-mo old, glutathione peroxidase (GPx) activity decreased (P < 0.0001) and superoxide dismutase activity increased (P = 0.02), and both were similar between muscle groups. The activity of GPx was greater in temperamental compared with calm heifers at 8 (P = 0.004) but not at 12 or 18 mo of age. These results detail divergent skeletal muscle mitochondrial characteristics of live Brahman heifers according to temperament, which should be further investigated as a potential link between temperament and product quality.


2014 ◽  
Vol 63 (2) ◽  
pp. 75-82 ◽  
Author(s):  
Eduardo L. Abreu ◽  
An-Lin Cheng ◽  
Patricia J. Kelly ◽  
Keyna Chertoff ◽  
Leticia Brotto ◽  
...  

1998 ◽  
Vol 76 (1) ◽  
pp. 13-26 ◽  
Author(s):  
Judy E Anderson

Regeneration of skeletal muscle tissue includes sequential processes of muscle cell proliferation and commitment, cell fusion, muscle fiber differentiation, and communication between cells of various tissues of origin. Central to the process is the myosatellite cell, a quiescent precursor cell located between the mature muscle fiber and its sheath of external lamina. To form new fibers in a muscle damaged by disease or direct injury, satellite cells must be activated, proliferate, and subsequently fuse into an elongated multinucleated cell. Current investigations in the field concern modulation of the effectiveness of skeletal muscle regeneration, the regeneration-specific role of myogenic regulatory gene expression distinct from expression during development, the impact of growth and scatter factors and their respective receptors in amplifying precursor numbers, and promoting fusion and maturation of new fibers and the ultimate clinical therapeutic applications of such information to alleviate disease. One approach to muscle regeneration integrates observations of muscle gene expression, proliferation, myoblast fusion, and fiber growth in vivo with parallel studies of cell cycling behaviour, endocrine perturbation, and potential biochemical markers of steps in the disease-repair process detected by magnetic resonance spectroscopy techniques. Experiments on muscles from limb, diaphragm, and heart of the mdx dystrophic mouse, made to parallel clinical trials on human Duchenne muscular dystrophy, help to elucidate mechanisms underlying the positive treatment effects of the glucocorticoid drug deflazacort. This review illustrates an effective combination of in vivo and in vitro experiments to integrate the distinctive complexities of post-natal myogenesis in regeneration of skeletal muscle tissue.Key words: satellite cell, cell cycling, HGF/SF, c-met receptor, MyoD, myogenin, magnetic resonance spectroscopy, mdx dystrophic mouse, deflazacort.


Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 237 ◽  
Author(s):  
Andreas Fritzen ◽  
Frank Thøgersen ◽  
Kasper Thybo ◽  
Christoffer Vissing ◽  
Thomas Krag ◽  
...  

Mitochondrial DNA (mtDNA) replication is thought to be an integral part of exercise-training-induced mitochondrial adaptations. Thus, mtDNA level is often used as an index of mitochondrial adaptations in training studies. We investigated the hypothesis that endurance exercise training-induced mitochondrial enzymatic changes are independent of genomic dosage by studying mtDNA content in skeletal muscle in response to six weeks of knee-extensor exercise training followed by four weeks of deconditioning in one leg, comparing results to the contralateral untrained leg, in 10 healthy, untrained male volunteers. Findings were compared to citrate synthase activity, mitochondrial complex activities, and content of mitochondrial membrane markers (porin and cardiolipin). One-legged knee-extensor exercise increased endurance performance by 120%, which was accompanied by increases in power output and peak oxygen uptake of 49% and 33%, respectively (p < 0.01). Citrate synthase and mitochondrial respiratory chain complex I–IV activities were increased by 51% and 46–61%, respectively, in the trained leg (p < 0.001). Despite a substantial training-induced increase in mitochondrial activity of TCA and ETC enzymes, there was no change in mtDNA and mitochondrial inner and outer membrane markers (i.e. cardiolipin and porin). Conversely, deconditioning reduced endurance capacity by 41%, muscle citrate synthase activity by 32%, and mitochondrial complex I–IV activities by 29–36% (p < 0.05), without any change in mtDNA and porin and cardiolipin content in the previously trained leg. The findings demonstrate that the adaptations in mitochondrial enzymatic activity after aerobic endurance exercise training and the opposite effects of deconditioning are independent of changes in the number of mitochondrial genomes, and likely relate to changes in the rate of transcription of mtDNA.


Sign in / Sign up

Export Citation Format

Share Document