scholarly journals Local In Vivo Measures of Muscle Lipid and Oxygen Consumption Change in Response to Combined Vitamin D Repletion and Aerobic Training in Older Adults

Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 930 ◽  
Author(s):  
D. Travis Thomas ◽  
David M. Schnell ◽  
Maja Redzic ◽  
Mingjun Zhao ◽  
Hideat Abraha ◽  
...  

Intramyocellular (IMCL), extramyocellular lipid (EMCL), and vitamin D deficiency are associated with muscle metabolic dysfunction. This study compared the change in [IMCL]:[EMCL] following the combined treatment of vitamin D and aerobic training (DAT) compared with vitamin D (D), aerobic training (AT), and control (CTL). Male and female subjects aged 60–80 years with a BMI ranging from 18.5–34.9 and vitamin D status of ≤32 ng/mL (25(OH)D) were recruited to randomized, prospective clinical trial double-blinded for supplement with a 2 × 2 factorial design. Cholecalciferol (Vitamin D3) (10,000 IU × 5 days/week) or placebo was provided for 13 weeks and treadmill aerobic training during week 13. Gastrocnemius IMCL and EMCL were measured with magnetic resonance spectroscopy (MRS) and MRI. Hybrid near-infrared diffuse correlation spectroscopy measured hemodynamics. Group differences in IMCL were observed when controlling for baseline IMCL (p = 0.049). DAT was the only group to reduce IMCL from baseline, while a mean increase was observed in all other groups combined (p = 0.008). IMCL reduction and the corresponding increase in rVO2 at study end (p = 0.011) were unique to DAT. Vitamin D, when combined with exercise, may potentiate the metabolic benefits of exercise by reducing IMCL and increasing tissue-level VO2 in healthy, older adults.

1994 ◽  
Vol 77 (1) ◽  
pp. 5-10 ◽  
Author(s):  
K. K. McCully ◽  
S. Iotti ◽  
K. Kendrick ◽  
Z. Wang ◽  
J. D. Posner ◽  
...  

Simultaneous measurements of phosphocreatine (PCr) and oxyhemoglobin (HbO2) saturation were made during recovery from exercise in calf muscles of five male subjects. PCr was measured using magnetic resonance spectroscopy in a 2.0-T 78-cm-bore magnet with a 9-cm-diam surface coil. Relative HbO2 saturation was measured as the difference in absorption of 750- and 850-nm light with use of near-infrared spectroscopy. The light source and detectors were 3 cm apart. Exercise consisted of isokinetic plantar flexion in a supine position. Two 5-min submaximal protocols were performed with PCr depletion to 60% of resting values and with pH values of > 7.0. Then two 1-min protocols of rapid plantar flexion were performed to deplete PCr values to 5–20% of resting values with pH values of < 6.8. Areas of PCr peaks (every 8 s) and HbO2 saturation (every 1 s) were fit to a monoexponential function, and a time constant was calculated. The PCr time constant was larger after maximal exercise (68.3 +/- 10.5 s) than after submaximal exercise (36.0 +/- 6.5 s), which is consistent with the effects of low pH on PCr recovery. HbO2 resaturation approximated submaximal PCr recovery and was not different between maximal (29.4 +/- 5.5 s) and submaximal (27.6 +/- 6.0 s) exercise. We conclude that magnetic resonance spectroscopy measurements of PCr recovery and near-infrared spectroscopy measurements of recovery of HbO2 saturation provide similar information as long as muscle pH remains near 7.0.


2013 ◽  
Vol 115 (6) ◽  
pp. 803-811 ◽  
Author(s):  
Gwenael Layec ◽  
Luke J. Haseler ◽  
Joel D. Trinity ◽  
Corey R. Hart ◽  
Xin Liu ◽  
...  

Although phosphorus magnetic resonance spectroscopy (31P-MRS)-based evidence suggests that in vivo peak mitochondrial respiration rate in young untrained adults is limited by the intrinsic mitochondrial capacity of ATP synthesis, it remains unknown whether a large, locally targeted increase in convective O2 delivery would alter this interpretation. Consequently, we examined the effect of superimposing reactive hyperemia (RH), induced by a period of brief ischemia during the last minute of exercise, on oxygen delivery and mitochondrial function in the calf muscle of nine young adults compared with free-flow conditions (FF). To this aim, we used an integrative experimental approach combining 31P-MRS, Doppler ultrasound imaging, and near-infrared spectroscopy. Limb blood flow [area under the curve (AUC), 1.4 ± 0.8 liters in FF and 2.5 ± 0.3 liters in RH, P < 0.01] and convective O2 delivery (AUC, 0.30 ± 0.16 liters in FF and 0.54 ± 0.05 liters in RH, P < 0.01), were significantly increased in RH compared with FF. RH was also associated with significantly higher capillary blood flow ( P < 0.05) and faster tissue reoxygenation mean response times (70 ± 15 s in FF and 24 ± 15 s in RH, P < 0.05). This resulted in a 43% increase in estimated peak mitochondrial ATP synthesis rate (29 ± 13 mM/min in FF and 41 ± 14 mM/min in RH, P < 0.05) whereas the phosphocreatine (PCr) recovery time constant in RH was not significantly different ( P = 0.22). This comprehensive assessment of local skeletal muscle O2 availability and utilization in untrained subjects reveals that mitochondrial function, assessed in vivo by 31P-MRS, is limited by convective O2 delivery rather than an intrinsic mitochondrial limitation.


2020 ◽  
Author(s):  
K. E. Hupfeld ◽  
H. W. Hyatt ◽  
P. Alvarez Jerez ◽  
M. Mikkelsen ◽  
C. J. Hass ◽  
...  

AbstractBrain markers of oxidative damage increase with advancing age. In response, brain antioxidant levels may also increase with age, although this has not been well investigated. Here we used edited magnetic resonance spectroscopy to quantify endogenous levels of glutathione (GSH, one of the most abundant brain antioxidants) in 37 young (mean: 21.8 (2.5) years; 19 F) and 23 older adults (mean: 72.8 (8.9) years; 19 F). Accounting for age-related atrophy, we identified higher frontal and sensorimotor GSH levels for the older compared to the younger adults. For the older adults only, higher sensorimotor (but not frontal) GSH was correlated with poorer balance, gait, and manual dexterity. This suggests a regionally-specific relationship between higher brain oxidative stress levels and motor performance declines with age. We suggest these findings reflect a compensatory upregulation of GSH in response to increasing brain oxidative stress with normal aging. Together, these results provide insight into age differences in brain antioxidant levels and implications for motor function.


2011 ◽  
Vol 04 (03) ◽  
pp. 227-237 ◽  
Author(s):  
TAKAFUMI HAMAOKA ◽  
KEVIN K. MCCULLY

Britton Chance has pioneered magnetic resonance spectroscopy (MRS) and near-infrared (NIR) spectroscopy (NIRS) as noninvasive methods for measuring muscle metabolism in vivo from the late 1970s. This review honoring Britton Chance will highlight the progress that has been made in developing and utilizing MRS and NIRS technologies for evaluating skeletal muscle O2 dynamics and energetics. Adaptation of MRS and NIRS technology has focused on the validity and reliability of the measurements and extending the methods in physiological and clinical research. Britton Chance has conducted MRS and NIRS research on elite athletes and a number of chronic health conditions, including patients with chronic heart failure, peripheral vascular disease, and neuromuscular myopathies. As MRS and NIRS technologies are practical and useful for measuring human muscle metabolism, we will strive to continue Chance's legacy by advancing muscle MRS and NIRS studies.


Author(s):  
Gemma Bale ◽  
Ajay Rajaram ◽  
Matthew Kewin ◽  
Laura Morrison ◽  
Alan Bainbridge ◽  
...  

AbstractThis is the first multimodal study of cerebral tissue metabolism and perfusion post-hypoxic-ischaemic (HI) brain injury using broadband near-infrared spectroscopy (bNIRS), diffuse correlation spectroscopy (DCS), positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). In seven piglet preclinical models of neonatal HI, we measured cerebral tissue saturation (StO2), cerebral blood flow (CBF), cerebral oxygen metabolism (CMRO2), changes in the mitochondrial oxidation state of cytochrome c oxidase (oxCCO), cerebral glucose metabolism (CMRglc) and tissue biochemistry (Lac+Thr/tNAA). At baseline, the parameters measured in the piglets that experience HI (not controls) were 64 ± 6% StO2, 35 ± 11 ml/100 g/min CBF and 2.0 ± 0.4 μmol/100 g/min CMRO2. After HI, the parameters measured were 68 ± 6% StO2, 35 ± 6 ml/100 g/min CBF, 1.3 ± 0.1 μmol/100 g/min CMRO2, 0.4 ± 0.2 Lac+Thr/tNAA and 9.5 ± 2.0 CMRglc. This study demonstrates the capacity of a multimodal set-up to interrogate the pathophysiology of HIE using a combination of optical methods, MRS, and PET.


2020 ◽  
Vol 75 (12) ◽  
pp. 2269-2277
Author(s):  
Ole Kristian Berg ◽  
Oh Sung Kwon ◽  
Thomas J Hureau ◽  
Heather L Clifton ◽  
Taylor S Thurston ◽  
...  

Abstract Maximal strength training (MST) results in robust improvements in skeletal muscle force production, efficiency, and mass. However, the effects of MST on muscle mitochondria are still unknown. Accordingly, the purpose of this study was to examine, from the molecular level to whole-muscle, mitochondrial adaptations induced by 8 weeks of knee-extension MST in the quadriceps of 10 older adults using immunoblotting, spectrophotometry, high-resolution respirometry in permeabilized muscle fibers, in vivo 31P magnetic resonance spectroscopy (31P-MRS), and gas exchange. As anticipated, MST resulted in an increased isometric knee-extensor force from 133 ± 36 to 147 ± 49 Nm (p &lt; .05) and quadriceps muscle volume from 1,410 ± 103 to 1,555 ± 455 cm3 (p &lt; .05). Mitochondrial complex (I–V) protein abundance and citrate synthase activity were not significantly altered by MST. Assessed ex vivo, maximal ADP-stimulated respiration (state 3CI+CII, PRE: 23 ± 6 and POST: 14 ± 5 ρM·mg−1·s−1, p &lt; .05), was decreased by MST, predominantly, as a result of a decline in complex I-linked respiration (p &lt; .05). Additionally, state 3 free-fatty acid linked respiration was decreased following MST (PRE: 19 ± 5 and POST: 14 ± 3 ρM·mg−1·s−1, p &lt; .05). Assessed in vivo, MST slowed the PCr recovery time constant (PRE: 49 ± 13 and POST: 57 ± 16 seconds, p &lt; .05) and lowered, by ~20% (p = .055), the quadriceps peak rate of oxidative ATP synthesis, but did not significantly alter the oxidation of lipid. Although these, likely qualitative, mitochondrial adaptations are potentially negative in terms of skeletal muscle energetic capacity, they need to be considered in light of the many improvements in muscle function that MST affords older adults.


2020 ◽  
Vol 61 (11) ◽  
pp. 1986-1994 ◽  
Author(s):  
Ginga Shimakawa ◽  
Thomas Roach ◽  
Anja Krieger-Liszkay

Abstract Leaf senescence is an important process for plants to remobilize a variety of metabolites and nutrients to sink tissues, such as developing leaves, fruits and seeds. It has been suggested that reactive oxygen species (ROS) play an important role in the initiation of leaf senescence. Flag leaves of two different barley varieties, cv. Lomerit and cv. Carina, showed differences in the loss of photosystems and in the production of ROS at a late stage of senescence after significant loss of chlorophyll (Krieger-Liszkay et al. 2015). Here, we investigated photosynthetic electron transport and ROS production in primary leaves of these two varieties at earlier stages of senescence. Comparisons were made between plants grown outside in natural light and temperatures and plants grown in temperature-controlled growth chambers under low light intensity. Alterations in the content of photoactive P700, ferredoxin and plastocyanin (PC) photosynthetic electron transport were analyzed using in vivo near-infrared absorbance changes and chlorophyll fluorescence, while ROS were measured with spin-trapping electron paramagnetic resonance spectroscopy. Differences in ROS production between the two varieties were only observed in outdoor plants, whereas a loss of PC was common in both barley varieties regardless of growth conditions. We conclude that the loss of PC is the earliest detectable photosynthetic parameter of leaf senescence while differences in the production of individual ROS species occur later and depend on environmental factors.


1994 ◽  
Vol 72 (11-12) ◽  
pp. 537-545 ◽  
Author(s):  
JoEllen Welsh

1,25-Dihydroxycholecalciferol D3 (1,25(OH)2D3), the active metabolite of vitamin D, is a potent inhibitor of breast cancer cell growth both in vivo and in vitro. We have shown that MCF-7 cells treated with 100 nM 1,25(OH)2D3 exhibit characteristic apoptotic morphology (pyknotic nuclei, chromatin and cytoplasmic condensation, nuclear matrix protein reorganization) within 48 h. In the experiments reported here, we examined the interactions between 1,25(OH)2D3 and the antiestrogen 4-hydroxytamoxifen (TAM), which also induces apoptosis in MCF-7 cells. Our data suggest that TAM significantly potentiates the reduction in cell number induced by 1,25(OH)2D3 alone. Combined treatment with 1,25(OH)2D3 and TAM enhances the degree of apoptosis assessed using morphological markers that identify chromatin and nuclear matrix protein condensation. We have selected a subclone of MCF-7 cells resistant to 1,25(OH)2D3 (MCF-7D3Res). These cells express the vitamin D receptor and exhibit doubling times comparable to the parental MCF-7 cells, even when grown in 100 mM 1,25(OH)2D3. Treatment of both parental and resistant MCF-7 cells with TAM induces apoptosis and clusterin. These data emphasize that apoptosis can be induced in MCF-7 cells either by activation of vitamin-D-mediated signalling or disruption of estrogen-dependent signalling.Key words: apoptosis, breast, vitamin D, antiestrogen, gene expression, clusterin.


Sign in / Sign up

Export Citation Format

Share Document