scholarly journals Skeletal Muscle Quality Of Nonagenarians And Centenarians

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 825-825
Author(s):  
Iva Miljkovic ◽  
Adam Sterczala ◽  
Emma Barinas-Mitchell ◽  
Ryan Cvejkus ◽  
Mary Feitosa ◽  
...  

Abstract Skeletal muscle adipose tissue infiltration is hypothesized to lead to poorer muscle quality and function with aging. Indeed, skeletal muscle adiposity has emerged as a consistent, independent predictor of skeletal muscle strength, mobility, metabolic disorders, and survival among older adults. However, phenotypic features of skeletal muscle among the oldest-old remain poorly characterized. Herein, we evaluated the skeletal muscle characteristics of 54 nonagenarians and centenarians (mean age 98 years, range 90-110 years; 63% women) and 25 middle-aged individuals (mean age 54 years, range 40-59 years; 36% women) belonging to the Long Life Family Study (LLFS), an international, multicenter cohort of families with a clustering of longevity. Ultrasonography was used to measure echo intensity of the sternocleidomastoid muscle, which has a similar fiber type distribution to the rectus femoris. Greater echo intensity is indicative of lower muscle quality (greater adipose and fibrotic tissue). Current smoking, alcohol intake, and BMI were similar between the age groups. Nonagenarians and centenarians had lower grip strength (16.3 vs. 39 kg) and were less physically active (22.2% vs 66.7% exercised 1+ times per week) compared to younger individuals (P<0.001 for all). Mean±SE echo intensity, adjusted for gender, field center, BMI and physical activity was 52.1±1.7 among nonagenarians and centenarians compared to 44.2±2.4 among younger individuals (P=0.0098). Our preliminary findings suggest that nonagenarians and centenarians may have substantially lower skeletal muscle quality and strength compared to their younger aged counterparts. Additional research is needed to better understand the mechanisms leading to poorer muscle characteristics of the oldest-old.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8224 ◽  
Author(s):  
Rob J. MacLennan ◽  
Michael Sahebi ◽  
Nathan Becker ◽  
Ethan Davis ◽  
Jeanette M. Garcia ◽  
...  

Background Disuse of a muscle group, which occurs during bedrest, spaceflight, and limb immobilization, results in atrophy. It is unclear, however, if the magnitude of decline in skeletal muscle quality is similar to that for muscle size. The purpose of this study was to examine the effects of two weeks of knee joint immobilization on vastus lateralis and rectus femoris echo intensity and cross-sectional area. Methods Thirteen females (mean ± SD age = 21 ± 2 years) underwent two weeks of left knee joint immobilization via ambulating on crutches and use of a brace. B-mode ultrasonography was utilized to obtain transverse plane images of the immobilized and control vastus lateralis and rectus femoris at pretest and following immobilization. Effect size statistics and two-way repeated measures analyses of variance were used to interpret the data. Results No meaningful changes were demonstrated for the control limb and the rectus femoris of the immobilized limb. Analyses showed a large increase in vastus lateralis echo intensity (i.e., decreased muscle quality) for the immobilized limb (p = .006, Cohen’s d = .918). For vastus lateralis cross-sectional area, no time × limb interaction was observed (p = .103), but the effect size was moderate (d = .570). There was a significant association between the increase in vastus lateralis echo intensity and the decrease in cross-sectional area (r =  − .649, p = .016). Conclusion In female participants, two weeks of knee joint immobilization resulted in greater deterioration of muscle quality than muscle size. Echo intensity appears to be an attractive clinical tool for monitoring muscle quality during disuse.


2008 ◽  
Vol 295 (1) ◽  
pp. C203-C212 ◽  
Author(s):  
Matthew P. Krause ◽  
Ying Liu ◽  
Vivian Vu ◽  
Lawrence Chan ◽  
Aimin Xu ◽  
...  

Adiponectin (Ad) is linked to various disease states and mediates antidiabetic and anti-inflammatory effects. While it was originally thought that Ad expression was limited to adipocytes, we demonstrate here that Ad is expressed in mouse skeletal muscles and within differentiated L6 myotubes, as assessed by RT-PCR, Western blot, and immunohistochemical analyses. Serial muscle sections stained for fiber type, lipid content, and Ad revealed that muscle fibers with elevated intramyocellular Ad expression were consistently type IIA and IID fibers with detectably higher intramyocellular lipid (IMCL) content. To determine the effect of Ad on muscle phenotype and function, we used an Ad-null [knockout (KO)] mouse model. Body mass increased significantly in 24-wk-old KO mice [+5.5 ± 3% relative to wild-type mice (WT)], with no change in muscle mass observed. IMCL content was significantly increased (+75.1 ± 25%), whereas epididymal fat mass, although elevated, was not different in the KO mice compared with WT (+35.1 ± 23%; P = 0.16). Fiber-type composition was unaltered, although type IIB fiber area was increased in KO mice (+25.5 ± 6%). In situ muscle stimulation revealed lower peak tetanic forces in KO mice relative to WT (−47.5 ± 6%), with no change in low-frequency fatigue rates. These data demonstrate that the absence of Ad expression causes contractile dysfunction and phenotypical changes in skeletal muscle. Furthermore, we demonstrate that Ad is expressed in skeletal muscle and that its intramyocellular localization is associated with elevated IMCL, particularly in type IIA/D fibers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mario Chueire de Andrade-Junior ◽  
Isabel Chateaubriand Diniz de Salles ◽  
Christina May Moran de Brito ◽  
Laerte Pastore-Junior ◽  
Renato Fraga Righetti ◽  
...  

Background: Intensive care patients commonly develop muscle wasting and functional impairment. However, the role of severe COVID-19 in the magnitude of muscle wasting and functionality in the acute critical disease is unknown.Objective: To perform a prospective characterization to evaluate the skeletal muscle mass and functional performance in intensive care patients with severe COVID-19.Methods: Thirty-two critically ill patients (93.8% male; age: 64.1 ± 12.6 years) with the diagnosis of the severe COVID-19 were prospectively recruited within 24 to 72 h following intensive care unit (ICU) admission, from April 2020 to October 2020, at Hospital Sírio-Libanês in Brazil. Patients were recruited if older than 18 years old, diagnosis of severe COVID-19 confirmed by RT-PCR, ICU stay and absence of limb amputation. Muscle wasting was determined through an ultrasound measurement of the rectus femoris cross-sectional area, the thickness of the anterior compartment of the quadriceps muscle (rectus femoris and vastus intermedius), and echogenicity. The peripheral muscle strength was assessed with a handgrip test. The functionality parameter was determined through the ICU mobility scale (IMS) and the International Classification of Functioning, Disability and Health (ICF). All evaluations were performed on days 1 and 10.Results: There were significant reductions in the rectus femoris cross-section area (−30.1% [95% IC, −26.0% to −34.1%]; P < 0.05), thickness of the anterior compartment of the quadriceps muscle (−18.6% [95% IC, −14.6% to 22.5%]; P < 0.05) and handgrip strength (−22.3% [95% IC, 4.7% to 39.9%]; P < 0.05) from days 1 to 10. Patients showed increased mobility (0 [0–5] vs 4.5 [0–8]; P < 0.05), improvement in respiratory function (3 [3–3] vs 2 [1–3]; P < 0.05) and structure respiratory system (3 [3–3] vs 2 [1–3]; P < 0.05), but none of the patients returned to normal levels.Conclusion: In intensive care patients with severe COVID-19, muscle wasting and decreased muscle strength occurred early and rapidly during 10 days of ICU stay with improved mobility and respiratory functions, although they remained below normal levels. These findings may provide insights into skeletal muscle wasting and function in patients with severe COVID-19.


Author(s):  
Amanda Vale-Lira ◽  
Natália Turri-Silva ◽  
Kenneth Verboven ◽  
João Luiz Quagliotti Durigan ◽  
Alexandra Corrêa de Lima ◽  
...  

Exercise intolerance, a hallmark of patients with heart failure (HF), is associated with muscle weakness. However, its causative microcirculatory and muscle characteristics among those with preserved or reduced ejection fraction (HFpEF or HFrEF) phenotype is unclear. The musculoskeletal abnormalities that could result in impaired peripheral microcirculation are sarcopenia and muscle strength reduction in HF, implying lowered oxidative capacity and perfusion affect transport and oxygen utilization during exercise, an essential task from the microvascular muscle function. Besides that, skeletal muscle microcirculatory abnormalities have also been associated with exercise intolerance in HF patients who also present skeletal muscle myopathy. This cross-sectional study aimed to compare the muscle microcirculation dynamics via near-infrared spectroscopy (NIRS) response during an isokinetic muscle strength test and ultrasound-derived parameters (echo intensity was rectus femoris muscle, while the muscle thickness parameter was measured on rectus femoris and quadriceps femoris) in heart failure patients with HFpEF and HFrEF phenotypes and different functional severities (Weber Class A, B, and C). Twenty-eight aged-matched patients with HFpEF (n = 16) and HFrEF (n = 12) were assessed. We found phenotype differences among those with Weber C severity, with HFrEF patients reaching lower oxyhemoglobin (O2Hb, μM) (−10.9 ± 3.8 vs. −23.7 ± 5.7, p = 0.029) during exercise, while HFpEF reached lower O2Hb during the recovery period (−3.0 ± 3.4 vs. 5.9 ± 2.8, p = 0.007). HFpEF with Weber Class C also presented a higher echo intensity than HFrEF patients (29.7 ± 8.4 vs. 15.1 ± 6.8, p = 0.017) among the ultrasound-derived variables. Our preliminary study revealed more pronounced impairments in local microcirculatory dynamics in HFpEF vs. HFrEF patients during a muscle strength exercise, combined with muscle-skeletal abnormalities detected via ultrasound imaging, which may help explain the commonly observed exercise intolerance in HFpEF patients.


Dose-Response ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 155932582097454
Author(s):  
Wen-Qing Xie ◽  
Chen Men ◽  
Miao He ◽  
Yu-sheng Li ◽  
Shan Lv

Sarcopenia is often regarded as an early sign of weakness and is the core element of muscle weakness in elderly individuals. Sarcopenia is closely related to the reduction of exercise, and elderly individuals often suffer from decreased muscle mass and function due to a lack of exercise. At present, studies have confirmed that resistance and aerobic exercise are related to muscle mass, strength and fiber type and to the activation and proliferation of muscle stem cells (MuSCs). Increasing evidence shows that microRNAs (miRNAs) play an important role in exercise-related changes in the quantity, composition and function of skeletal muscle. At the cellular level, miRNAs have been shown to regulate the proliferation and differentiation of muscle cells. In addition, miRNAs are related to the composition and transformation of muscle fibers and involved in the transition of MuSCs from the resting state to the activated state. Therefore, exercise may delay sarcopenia in elderly individuals by regulating miRNAs in skeletal muscle. In future miRNA-focused treatment strategies, these studies will provide valuable information for the formulation of exercise methods and will provide useful and targeted exercise programs for elderly individuals with sarcopenia.


2016 ◽  
Vol 31 (suppl_1) ◽  
pp. i472-i472
Author(s):  
Douglas W. Gould ◽  
Emma L. Watson ◽  
Soteris Xenophontos ◽  
Barbara P. Vogt ◽  
João L. Viana ◽  
...  

Ultrasound ◽  
2019 ◽  
Vol 27 (4) ◽  
pp. 233-240 ◽  
Author(s):  
Rodrigo Rabello ◽  
Matias Fröhlich ◽  
Aline Felicio Bueno ◽  
Miriam Allein Zago Marcolino ◽  
Thainá De Bona Bernardi ◽  
...  

Introduction The ultrasound technique has been extensively used to measure echo intensity, with the goal of measuring muscle quality, muscle damage, or to detect neuromuscular disorders. However, it is not clear how reliable the technique is when comparing different days, raters, and analysts, or if the reliability is affected by the muscle site where the image is obtained from. The goal of this study was to compare the intra-rater, inter-rater, and inter-analyst reliability of ultrasound measurements obtained from two different sites at the rectus femoris muscle. Methods Muscle echo intensity was quantified from ultrasound images acquired at 50% [RF50] and at 70% [RF70] of the thigh length in 32 healthy subjects. Results Echo intensity values were higher ( p = 0.0001) at RF50 (61.08 ± 12.04) compared to RF70 (57.32 ± 12.58). Reliability was high in both RF50 and RF70 for all comparisons: intra-rater (ICC = 0.89 and 0.94), inter-rater (ICC = 0.89 and 0.89), and inter-analyst (ICC = 0.98 and 0.99), respectively. However, there were differences ( p < 0.05) between raters and analysts when obtaining/analyzing echo intensity values in both rectus femoris sites. Conclusions The differences in echo intensity values between positions suggest that rectus femoris's structure is not homogeneous, and therefore measurements from different muscle regions should not be used interchangeably. Both sites showed a high reliability, meaning that the measure is accurate if performed by the same experienced rater in different days, if performed by different experienced raters in the same day, and if analyzed by different well-trained analysts, regardless of the evaluated muscle site.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Francesco Bellanti ◽  
Aurelio Lo Buglio ◽  
Gianluigi Vendemiale

Sarcopenia is defined by the age-related loss of skeletal muscle quality, which relies on mitochondrial homeostasis. During aging, several mitochondrial features such as bioenergetics, dynamics, biogenesis, and selective autophagy (mitophagy) are altered and impinge on protein homeostasis, resulting in loss of muscle mass and function. Thus, mitochondrial dysfunction contributes significantly to the complex pathogenesis of sarcopenia, and mitochondria are indicated as potential targets to prevent and treat this age-related condition. After a concise presentation of the age-related modifications in skeletal muscle quality and mitochondrial homeostasis, the present review summarizes the most relevant findings related to mitochondrial alterations in sarcopenia.


2021 ◽  
Vol 10 (21) ◽  
pp. 4933
Author(s):  
Praval Khanal ◽  
Alun G. Williams ◽  
Lingxiao He ◽  
Georgina K. Stebbings ◽  
Gladys L. Onambele-Pearson ◽  
...  

Obesity may aggravate the effects of sarcopenia on skeletal muscle structure and function in the elderly, but no study has attempted to identify the gene variants associated with sarcopenia in obese women. Therefore, the aims of the present study were to: (1) describe neuromuscular function in sarcopenic and non-sarcopenic women with or without obesity; (2) identify gene variants associated with sarcopenia in older obese women. In 307 Caucasian women (71 ± 6 years, 66.3 ± 11.3 kg), skeletal muscle mass was estimated using bioelectric impedance, and function was tested with a 30 s one-leg standing-balance test. Biceps brachii thickness and vastus lateralis cross-sectional area (VLACSA) were measured with B-mode ultrasonography. Handgrip strength, maximum voluntary contraction elbow flexion (MVCEF), and knee extension torque (MVCKE) were measured by dynamometry, and MVCKE/VLACSA was calculated. Genotyping was performed for 24 single-nucleotide polymorphisms (SNPs), selected based on their previous associations with muscle-related phenotypes. Based on sarcopenia and obesity thresholds, groups were classified as sarcopenic obese, non-sarcopenic obese, sarcopenic non-obese, or non-sarcopenic non-obese. A two-way analysis of covariance was used to assess the main effects of sarcopenia and obesity on muscle-related phenotypes and binary logistic regression was performed for each SNP to investigate associations with sarcopenia in obesity. There were no significant obesity * sarcopenic status interactions for any of the investigated muscle-related phenotypic parameters. Neither sarcopenia nor obesity had a significant effect on biceps brachii thickness, but sarcopenia was associated with lower VLACSA (p = 0.003). Obesity was associated with lower MVCEF (p = 0.032), MVCKE (p = 0.047), and MVCKE/VLACSA (p = 0.012) with no significant effect of sarcopenia. Adjusted for age and height, three SNPs (ACTN3 rs1815739, MTHFR rs1801131, and MTHFR rs1537516) were associated with sarcopenia in obese participants. Sarcopenia was associated with a smaller muscle size, while obesity resulted in a lower muscle quality irrespective of sarcopenia. Three gene variants (ACTN3 rs1815739, MTHFR rs1801131, and MTHFR rs1537516) suspected to affect muscle function, homocysteine metabolism, or DNA methylation, respectively, were associated with sarcopenia in obese elderly women. Understanding the skeletal muscle features affected by sarcopenia and obesity, and identification of genes related to sarcopenia in obese women, may facilitate early detection of individuals at particular risk of sarcopenic obesity.


Sign in / Sign up

Export Citation Format

Share Document