On-axis triplications in elastic orthorhombic media

2020 ◽  
Vol 224 (1) ◽  
pp. 449-467
Author(s):  
Shibo Xu ◽  
Alexey Stovas ◽  
Hitoshi Mikada ◽  
Junichi Takekawa

SUMMARY Triplicated traveltime curve has three arrivals at a given distance with the bowtie shape in the traveltime-offset curve. The existence of the triplication can cause a lot of problems such as several arrivals for the same wave type, anomalous amplitudes near caustics, anomalous behaviour of rays near caustics, which leads to the structure imaging deviation and redundant signal in the inversion of the model parameters. Hence, triplication prediction becomes necessary when the medium is known. The research of the triplication in transversely isotropic medium with a vertical symmetry axis (VTI) has been well investigated and it has become clear that, apart from the point singularity case, the triplicated traveltime only occurs for S wave. On contrary to the VTI case, the triplication behaviour in the orthorhombic (ORT) medium has not been well focused due to the model complexity. In this paper, we derive the second-order coefficients of the slowness surface for two S waves in the vicinity of three symmetry axes and define the elliptic form function to examine the existence of the on-axis triplication in ORT model. The existence of the on-axis triplication is found by the sign of the defined curvature coefficients. Three ORT models are defined in the numerical examples to analyse the behaviour of the on-axis triplication. The plots of the group velocity surface in the vicinity of three symmetry axes are shown for different ORT models where different shapes: convex or the saddle-shaped (concave along one direction and convex along with another) indicates the existence of the on-axis triplication. We also show the traveltime plots (associated with the group velocity surface) to illustrate the effect of the on-axis triplication.

Author(s):  
Maryam Safarshahi ◽  
Igor B. Morozov

ABSTRACT Empirical models of geometrical-, Q-, t-star, and kappa-type attenuation of seismic waves and ground-motion prediction equations (GMPEs) are viewed as cases of a common empirical standard model describing variation of wave amplitudes with time and frequency. Compared with existing parametric and nonparametric approaches, several new features are included in this model: (1) flexible empirical parameterization with possible nonmonotonous time or distance dependencies; (2) joint inversion for time or distance and frequency dependencies, source spectra, site responses, kappas, and Q; (3) additional constraints removing spurious correlations of model parameters and data residuals with source–receiver distances and frequencies; (4) possible kappa terms for sources as well as for receivers; (5) orientation-independent horizontal- and three-component amplitudes; and (6) adaptive filtering to reduce noise effects. The approach is applied to local and regional S-wave amplitudes in southeastern Iran. Comparisons with previous studies show that conventional attenuation models often contain method-specific biases caused by limited parameterizations of frequency-independent amplitude decays and assumptions about the models, such as smoothness of amplitude variations. Without such assumptions, the frequency-independent spreading of S waves is much faster than inferred by conventional modeling. For example, transverse-component amplitudes decrease with travel time t as about t−1.8 at distances closer than 90 km and as t−2.5 beyond 115 km. The rapid amplitude decay at larger distances could be caused by scattering within the near surface. From about 90 to 115 km distances, the amplitude increases by a factor of about 3, which could be due to reflections from the Moho and within the crust. With more accurate geometrical-spreading and kappa models, the Q factor for the study area is frequency independent and exceeds 2000. The frequency-independent and Q-type attenuation for vertical-component and multicomponent amplitudes is somewhat weaker than for the horizontal components. These observations appear to be general and likely apply to other areas.


2020 ◽  
Vol 223 (2) ◽  
pp. 1118-1129
Author(s):  
Mohammad Mahdi Abedi ◽  
Alexey Stovas

SUMMARY In exploration seismology, the acquisition, processing and inversion of P-wave data is a routine. However, in orthorhombic anisotropic media, the governing equations that describe the P-wave propagation are coupled with two S waves that are considered as redundant noise. The main approach to free the P-wave signal from the S-wave noise is the acoustic assumption on the wave propagation. The conventional acoustic assumption for orthorhombic media zeros out the S-wave velocities along three orthogonal axes, but leaves significant S-wave artefacts in all other directions. The new acoustic assumption that we propose mitigates the S-wave artefacts by zeroing out their velocities along the three orthogonal symmetry planes of orthorhombic media. Similar to the conventional approach, our method reduces the number of required model parameters from nine to six. As numerical experiments on multiple orthorhombic models show, the accuracy of the new acoustic assumption also compares well to the conventional approach. On the other hand, while the conventional acoustic assumption simplifies the governing equations, the new acoustic assumption further complicates them—an issue that emphasizes the necessity of simple approximate equations. Accordingly, we also propose simpler rational approximate phase-velocity and eikonal equations for the new acoustic orthorhombic media. We show a simple ray tracing example and find out that the proposed approximate equations are still highly accurate.


Geophysics ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. R49-R57 ◽  
Author(s):  
J. Germán Rubino ◽  
Danilo Velis

Prestack seismic data has been used in a new method to fully determine thin-bed properties, including the estimation of its thickness, P- and S-wave velocities, and density. The approach requires neither phase information nor normal-moveout (NMO) corrections, and assumes that the prestack seismic response of the thin layer can be isolated using an offset-dependent time window. We obtained the amplitude-versus-angle (AVA) response of the thin bed considering converted P-waves, S-waves, and all the associated multiples. We carried out the estimation of the thin-bed parameters in the frequency (amplitude spectrum) domain using simulated annealing. In contrast to using zero-offset data, the use of AVA data contributes to increase the robustness of this inverse problem under noisy conditions, as well as to significantly reduce its inherent nonuniqueness. To further reduce the nonuniqueness, and as a means to incorporate a priori geologic or geophysical information (e.g., well-log data), we imposed appropriate bounding constraints to the parameters of the media lying above and below the thin bed, which need not be known accurately. We tested the method by inverting noisy synthetic gathers corresponding to simple wedge models. In addition, we stochastically estimated the uncertainty of the solutions by inverting different data sets that share the same model parameters but are contaminated with different noise realizations. The results suggest that thin beds can be characterized fully with a moderate to high degree of confidence below tuning, even when using an approximate wavelet spectrum.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. C319-C336 ◽  
Author(s):  
Yuriy Ivanov ◽  
Alexey Stovas

Normal moveout (NMO) velocity is a commonly used tool in the seismic industry nowadays. In 3D surveys, the variation of the NMO velocity in a horizontal plane is elliptic in shape for the anisotropy or heterogeneity of any strength (apart from a few exotic cases). The NMO ellipse is used for Dix-type inversion and can provide important information on the strength of anisotropy and the orientation of the vertical symmetry planes, which can correspond, for example, to fractures’ orientation and compliances. To describe a vertically fractured finely layered medium (the fracture is orthogonal to the layering), an anisotropy of orthorhombic symmetry is commonly used. In areas with complicated geology and stress distribution, the orientation of the orthorhombic symmetry planes can be considerably altered from the initial position. We have derived the exact equations for the NMO ellipse in an elastic tilted orthorhombic layer with an arbitrary orientation of the symmetry planes. We have evaluated pure and converted wave modes and determined that the influence of the orientation upon the NMO ellipse for all the waves is strong. We have considered acoustic and ellipsoidal orthorhombic approximations of the NMO ellipse equations, which we used to develop a numerical inversion scheme. We determined that in the most general case of arbitrary orientation of the orthorhombic symmetry planes, the inversion results are unreliable due to significant trade-offs between the parameters. We have evaluated S-wave features such as point singularities (slowness surfaces of the split S-waves cross) and triplications (due to concaveness of the individual S-wave mode slowness surface) and their influence on the NMO ellipse.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 231-240 ◽  
Author(s):  
Lasse Amundsen ◽  
Arne Reitan

At the boundary between two solid media in welded contact, all three components of particle velocity and vertical traction are continuous through the boundary. Across the boundary between a fluid and a solid, however, only the vertical component of particle velocity is continuous while the horizontal components can be discontinuous. Furthermore, the pressure in the fluid is the negative of the vertical component of traction in the solid, while the horizontal components of traction vanish at the interface. Taking advantage of this latter fact, we show that total P‐ and S‐waves can be computed from the vertical component of the particle velocity recorded by single component geophones planted on the sea floor. In the case when the sea floor is transversely isotropic with a vertical axis of symmetry, the computation requires the five independent elastic stiffness components and the density. However, when the sea floor material is fully isotropic, the only material parameter needed is the local shear wave velocity. The analysis of the extraction problem is done in the slowness domain. We show, however, that the S‐wave section can be obtained by a filtering operation in the space‐frequency domain. The P‐wave section is then the difference between the vertical component of the particle velocity and the S‐wave component. A synthetic data example demonstrates the performance of the algorithm.


Geophysics ◽  
1982 ◽  
Vol 47 (5) ◽  
pp. 771-783 ◽  
Author(s):  
J. E. White

Radiation of elastic waves from a point force or from a localized torque into a transversely isotropic medium has been formulated in terms of displacement potentials, and transient waveforms have been computed by numerical Fourier inversion. For isotropic sandstone, this procedure yields P‐ and S‐wave pulses whose arrival times and magnitudes agree with theory. For a range of anisotropic rocks, arrival times of quasi‐P‐waves and quasi‐S‐waves agree with asymptotic theory. For extreme anisotropy, some quasi‐S‐wave pulses arrive at times which are not predicted by asymptotic theory. Magnitudes have not been compared with results of asymptotic theory, but decrease with distance appears to be in agreement. This Fourier inversion method gives near‐source changes in waveform which are not obtainable from the asymptotic theory.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. D101-D116
Author(s):  
Julius K. von Ketelhodt ◽  
Musa S. D. Manzi ◽  
Raymond J. Durrheim ◽  
Thomas Fechner

Joint P- and S-wave measurements for tomographic cross-borehole analysis can offer more reliable interpretational insight concerning lithologic and geotechnical parameter variations compared with P-wave measurements on their own. However, anisotropy can have a large influence on S-wave measurements, with the S-wave splitting into two modes. We have developed an inversion for parameters of transversely isotropic with a vertical symmetry axis (VTI) media. Our inversion is based on the traveltime perturbation equation, using cross-gradient constraints to ensure structural similarity for the resulting VTI parameters. We first determine the inversion on a synthetic data set consisting of P-waves and vertically and horizontally polarized S-waves. Subsequently, we evaluate inversion results for a data set comprising jointly measured P-waves and vertically and horizontally polarized S-waves that were acquired in a near-surface ([Formula: see text]) aquifer environment (the Safira research site, Germany). The inverted models indicate that the anisotropy parameters [Formula: see text] and [Formula: see text] are close to zero, with no P-wave anisotropy present. A high [Formula: see text] ratio of up to nine causes considerable SV-wave anisotropy despite the low magnitudes for [Formula: see text] and [Formula: see text]. The SH-wave anisotropy parameter [Formula: see text] is estimated to be between 0.05 and 0.15 in the clay and lignite seams. The S-wave splitting is confirmed by polarization analysis prior to the inversion. The results suggest that S-wave anisotropy may be more severe than P-wave anisotropy in near-surface environments and should be taken into account when interpreting cross-borehole S-wave data.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. C21-C33 ◽  
Author(s):  
Hongwei Wang ◽  
Suping Peng ◽  
Wenfeng Du

With the incident P-wave, we derive approximate formulas for amplitudes and polarizations of waves reflected from and transmitted through a planar, horizontal boundary between an overlying isotropic medium and an underlying tilted transversely isotropic (TTI) medium assuming that the directions of the phase and group velocities are consistent. Provided that the velocities in the isotropic medium are equal to the velocities along the symmetry axis direction, we derive the relational expression between the propagation angle in the TTI medium and the propagation angle in the hypothetical isotropic medium, under the condition that the horizontal slowness is the same, and then we update the approximate formula of the polarization in the TTI medium. Provided that the slow and fast transverse waves (qS and SH) are generated simultaneously in the anisotropic interface, we linearize for a six-order Zoeppritz equation, derive the azimuthal formula of longitudinal and S-waves, and determine their detailed expressions within the symmetry axis plane. According to the derived azimuthal AVO formula, we establish medium models, compare the derived AVO with the precision, and obtain the following conclusions: (1) The dip angle for the symmetry axis with respect to the vertical may have a sufficiently large impact on AVO, and the vertical longitudinal wave can generate an S-wave. (2) For the derived AVO formula, within the symmetry axis plane, the fitting effect of the approximate and exact formulas is good; however, within the other incident planes, taking the azimuth angle 45° as an example, the approximation is suitable for the large impedance contrast if the anisotropic parameters are set properly. (3) The error between the approximation and precision is mainly caused by the difference between the reflected and transmitted angles, the velocities’ derivation with respect to azimuth, and the division of approximation into isotropic and anisotropic parts.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. WA45-WA53 ◽  
Author(s):  
Vladimir Grechka

Three algebraic surfaces — the slowness surface, the phase-velocity surface, and the group-velocity surface — play fundamental roles in the theory of seismic wave propagation in anisotropic elastic media. While the slowness (sometimes called phase-slowness) and phase-velocity surfaces are fairly simple and their main algebraic properties are well understood, the group-velocity surfaces are extremely complex; they are complex to the extent that even the algebraic degree, [Formula: see text], of a system of polynomials describing the general group-velocity surface is currently unknown, and only the upper bound of the degree [Formula: see text] is available. This paper establishes the exact degree [Formula: see text] of the general group-velocity surface along with two closely related to [Formula: see text] quantities: the maximum number, [Formula: see text], of body waves that may propagate along a ray direction in a homogeneous anisotropic elastic solid [Formula: see text] and the maximum number, [Formula: see text], of isolated, singularity-unrelated cusps of a group-velocity surface [Formula: see text].


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. R447-R456 ◽  
Author(s):  
Yuting Duan ◽  
Paul Sava

Data-domain elastic wavefield tomography is an effective method for updating multiparameter elastic models that exploits much of the information provided by observed multicomponent data. However, poor illumination of the subsurface by P- and S-waves often prevents reliable updates of the model parameters. Moreover, differences in illumination, amplitude, and wavelength between P- and S-waves can distort the intrinsic physical relationships between the reconstructed model parameters. We have developed a method for elastic isotropic wavefield tomography that explicitly constrains the relationship between P- and S-wave velocities. By incorporating a model constraint term in the objective function, we confine P- and S-velocity updates to a physical area defined by prior information, for example, by laboratory measurements or well logs. We have determined that this physical constraint yields models that are more physically plausible, compared with models obtained using only the data misfit objective function.


Sign in / Sign up

Export Citation Format

Share Document