Northern Chile intermediate-depth earthquakes controlled by plate hydration
Summary We investigate the variations of the seismic source properties and aftershock activity using kinematic inversions and template-matching, for six large magnitude intermediate-depth earthquakes occurred in northern Chile. Results show similar rupture geometry and stress drop values between 7–30 MPa. Conversely, aftershocks productivity systematically decreases for the deeper events within the slab. Particularly there is a dramatic decrease in aftershock activity below the 400–450°C isotherm-depth, which separates high and low-hydrated zones. The events exhibit tensional focal mechanisms at unexpected depths within the slab, suggesting a deepening of the neutral plane, where the extensional regimen reaches the 700–800°C isotherm-depth. We interpret the reduction of aftershocks in the lower part of the extensional regime as the absence of a hydrated-slab at those depths. Our finding highlights the role of the thermal-structure and fluids in the subducting plate, in controlling the intermediated-depth seismic activity and shed new light in their causative mechanism.