scholarly journals A reduced stochastic model of core surface dynamics based on geodynamo simulations

2019 ◽  
Vol 219 (1) ◽  
pp. 522-539 ◽  
Author(s):  
N Gillet ◽  
L Huder ◽  
J Aubert

SUMMARYWe make use of recent geodynamo simulations to propose a reduced stochastic model of the dynamics at the surface of Earth’s core. On decadal and longer periods, this model replicates the most energetic eigen directions of the geodynamo computation. Towards shorter timescales, it proposes a compensation for weaknesses of these simulations. This model furthermore accounts for the signature, in the geomagnetic secular variation, of errors of representativeness associated with unresolved processes. We incorporate the reduced stochastic model into a geomagnetic data assimilation algorithm—an augmented state ensemble Kalman filter—and apply it to re-analyse magnetic field changes over the period 1880–2015. Errors of representativeness appear to be responsible for an important fraction of the observed changes in the secular variation, as it is the case in the dynamo simulation.Recovered core surface motions are primarily symmetric with respect to the equator. We observe the persistence of the eccentric westward gyre over the whole studied era and vortices that partly follow isocontours of the radial magnetic field at the core surface. Our flow models provide a good fit to decadal changes in the length-of-day and predict its interannual variations over the period 1940–2005. The largest core flow acceleration patterns are found in an equatorial belt below 10° in latitude and are associated with non-axisymmetric features. No systematic longitudinal drift of acceleration patterns is found, even over the past decades where satellite data are available. The acceleration of the high-latitude westward jet in the Pacific hemisphere is, during the satellite era, a factor 5 smaller than previously reported and its structure shows some evidence for equatorial asymmetry. The era of continuous satellite records provides enhanced contrast on the rapid core flow variations. The proposed assimilation algorithm offers the prospect of evaluating Earth-likeness of geodynamo simulations.

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Masaki Matsushima

AbstractThe electrical conductivity of the Earth’s core is an important physical parameter that controls the core dynamics and the thermal evolution of the Earth. In this study, the effect of core electrical conductivity on core surface flow models is investigated. Core surface flow is derived from a geomagnetic field model on the presumption that a viscous boundary layer forms at the core–mantle boundary. Inside the boundary layer, where the viscous force plays an important role in force balance, temporal variations of the magnetic field are caused by magnetic diffusion as well as motional induction. Below the boundary layer, where core flow is assumed to be in tangentially geostrophic balance or tangentially magnetostrophic balance, contributions of magnetic diffusion to temporal variation of the magnetic field are neglected. Under the constraint that the core flow is tangentially geostrophic beneath the boundary layer, the core electrical conductivity in the range from $${10}^{5} ~\mathrm{S}~{\mathrm{m}}^{-1}$$ 10 5 S m - 1 to $${10}^{7}~ \mathrm{S}~{\mathrm{m}}^{-1}$$ 10 7 S m - 1 has less significant effect on the core flow. Under the constraint that the core flow is tangentially magnetostrophic beneath the boundary layer, the influence of electrical conductivity on the core flow models can be clearly recognized; the magnitude of the mean toroidal flow does not increase or decrease, but that of the mean poloidal flow increases with an increase in core electrical conductivity. This difference arises from the Lorentz force, which can be stronger than the Coriolis force, for higher electrical conductivity, since the Lorentz force is proportional to the electrical conductivity. In other words, the Elsasser number, which represents the ratio of the Lorentz force to the Coriolis force, has an influence on the difference. The result implies that the ratio of toroidal to poloidal flow magnitudes has been changing in accordance with secular changes of rotation rate of the Earth and of core electrical conductivity due to a decrease in core temperature throughout the thermal evolution of the Earth.


2020 ◽  
Author(s):  
Kathy Whaler ◽  
Magnus Hammer ◽  
Chris Finlay ◽  
Nils Olsen

<p>The Swarm constellation provides information on both along- and across-track magnetic field gradients. Spatial changes of the magnetic vector field elements are described by a magnetic field gradient tensor, whose elements and their uncertainties can be estimated using the Virtual Observatory (VO) concept, whereby data within a cylinder centred on the VO with axis perpendicular to the Earth’s surface are reduced to a central point at satellite altitude. Recent experiments have shown that analysing data collected over a 4 month window provides the best compromise between reducing bias from the way the satellite orbits sample each VO cylinder and preserving information on temporal changes of the field, and that the data provide spatial information sufficient to resolve 300 non-overlapping VOs. We invert annual first differences of the 5 independent gradient tensor elements (providing estimates of secular variation, SV, gradients) at these 300 VOs over the Swarm era for advective velocity at the core-mantle boundary, forcing the flow to have minimal acceleration while providing an adequate fit to the data. We obtain flows similar to those from previous SV inversions but purely from the gradient information. The resolution of the SV gradients is higher than that of the SV itself, resulting in a ~30% increase in the number of effective flow parameters; this is thought to be because the gradients are less affected by long period external signals that are difficult to remove from the data, resulting in an improved signal to noise ratio. Although very little temporal change in the flow is required to reproduce even rapid changes in the magnetic field, we are able to isolate some robust flow changes, in particular regarding changes in the azimuthal flow acceleration, associated with the geomagnetic impulse in the Pacific region in around 2016.</p>


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Sabrina Sanchez ◽  
Johannes Wicht ◽  
Julien Bärenzung

Abstract The IGRF offers an important incentive for testing algorithms predicting the Earth’s magnetic field changes, known as secular variation (SV), in a 5-year range. Here, we present a SV candidate model for the 13th IGRF that stems from a sequential ensemble data assimilation approach (EnKF). The ensemble consists of a number of parallel-running 3D-dynamo simulations. The assimilated data are geomagnetic field snapshots covering the years 1840 to 2000 from the COV-OBS.x1 model and for 2001 to 2020 from the Kalmag model. A spectral covariance localization method, considering the couplings between spherical harmonics of the same equatorial symmetry and same azimuthal wave number, allows decreasing the ensemble size to about a 100 while maintaining the stability of the assimilation. The quality of 5-year predictions is tested for the past two decades. These tests show that the assimilation scheme is able to reconstruct the overall SV evolution. They also suggest that a better 5-year forecast is obtained keeping the SV constant compared to the dynamically evolving SV. However, the quality of the dynamical forecast steadily improves over the full assimilation window (180 years). We therefore propose the instantaneous SV estimate for 2020 from our assimilation as a candidate model for the IGRF-13. The ensemble approach provides uncertainty estimates, which closely match the residual differences with respect to the IGRF-13. Longer term predictions for the evolution of the main magnetic field features over a 50-year range are also presented. We observe the further decrease of the axial dipole at a mean rate of 8 nT/year as well as a deepening and broadening of the South Atlantic Anomaly. The magnetic dip poles are seen to approach an eccentric dipole configuration.


2011 ◽  
Vol 105-107 ◽  
pp. 2289-2294
Author(s):  
Jun Qiang Lian ◽  
Shun Yi Xie ◽  
Jian Wang

This paper provide two methods to analyze the cogging torque of PM motor with radial magnetic field and parallel magnetic field, FEM method and Analytic method. The FEM model and Analytic model of PM motor with radial magnetic field and parallel magnetic field are founded. We analyze the model in both methods. From the result of analysis. The air-gap magnetic density of PM motor can be analyzed. We can find the cogging torque of radial magnetic field PM motor is much heavily than the cogging torque of parallel magnetic field PM motor. The result of Analytic method is close to the result of FEM method. The Analytic method is useful in analyze the cogging torque of PM motor.


1962 ◽  
Vol 13 (1) ◽  
pp. 21-32 ◽  
Author(s):  
W. F. Hughes ◽  
R. A. Elco

The motion of an electrically conducting, incompressible, viscous fluid in the presence of a magnetic field is analyzed for flow between two parallel disks, one of which rotates at a constant angular velocity. The specific application to liquid metal lubrication in thrust bearings is considered. The two field configurations discussed are: an axial magnetic field with a radial current and a radial magnetic field with an axial current. It is shown that the load capacity of the bearing is dependent on the MHD interactions in the fluid and that the frictional torque on the rotor can be made zero for both field configurations by supplying electrical energy through the electrodes to the fluid.


Sign in / Sign up

Export Citation Format

Share Document