scholarly journals Relative moment tensors and deep Yakutat seismicity

2019 ◽  
Vol 219 (2) ◽  
pp. 1447-1462 ◽  
Author(s):  
Alexandre P Plourde ◽  
Michael G Bostock

SUMMARY We introduce a new relative moment tensor (MT) inversion method for clusters of nearby earthquakes. The method extends previous work by introducing constraints from S-waves that do not require modal decomposition and by employing principal component analysis to produce robust estimates of excitation. At each receiver, P and S waves from each event are independently aligned and decomposed into principal components. P-wave constraints on MTs are obtained from a ratio of coefficients corresponding to the first principal component, equivalent to a relative amplitude. For S waves we produce constraints on MTs involving three events, where one event is described as a linear combination of the other two, and coefficients are derived from the first two principal components. Nonlinear optimization is applied to efficiently find best-fitting tensile-earthquake and double-couple solutions for relative MT systems. Using synthetic data, we demonstrate the effectiveness of the P and S constraints both individually and in combination. We then apply the relative MT inversion to a set of 16 earthquakes from southern Alaska, at ∼125 km depth within the subducted Yakutat terrane. Most events are compatible with a stress tensor dominated by downdip tension, however, we observe several pairs of earthquakes with nearly antiparallel slip implying that the stress regime is heterogeneous and/or faults are extremely weak. The location of these events near the abrupt downdip termination of seismicity and the low-velocity zone suggest that they are caused by weakening via grain-size and volume reduction associated with eclogitization of the lower crustal gabbro layer.

1983 ◽  
Vol 73 (2) ◽  
pp. 419-434
Author(s):  
Jeffery S. Barker ◽  
Charles A. Langston

abstract Teleseismic P-wave first motions for the M ≧ 6 earthquakes near Mammoth Lakes, California, are inconsistent with the vertical strike-slip mechanisms determined from local and regional P-wave first motions. Combining these data sets allows three possible mechanisms: a north-striking, east-dipping strike-slip fault; a NE-striking oblique fault; and a NNW-striking normal fault. Inversion of long-period teleseismic P and SH waves for the events of 25 May 1980 (1633 UTC) and 27 May 1980 (1450 UTC) yields moment tensors with large non-double-couple components. The moment tensor for the first event may be decomposed into a major double couple with strike = 18°, dip = 61°, and rake = −15°, and a minor double couple with strike = 303°, dip = 43°, and rake = 224°. A similar decomposition for the last event yields strike = 25°, dip = 65°, rake = −6°, and strike = 312°, dip = 37°, and rake = 232°. Although the inversions were performed on only a few teleseismic body waves, the radiation patterns of the moment tensors are consistent with most of the P-wave first motion polarities at local, regional, and teleseismic distances. The stress axes inferred from the moment tensors are consistent with N65°E extension determined by geodetic measurements by Savage et al. (1981). Seismic moments computed from the moment tensors are 1.87 × 1025 dyne-cm for the 25 May 1980 (1633 UTC) event and 1.03 × 1025 dyne-cm for the 27 May 1980 (1450 UTC) event. The non-double-couple aspect of the moment tensors and the inability to obtain a convergent solution for the 25 May 1980 (1944 UTC) event may indicate that the assumptions of a point source and plane-layered structure implicit in the moment tensor inversion are not entirely valid for the Mammoth Lakes earthquakes.


Author(s):  
Yan Yang ◽  
Huajian Yao ◽  
Hanxiao Wu ◽  
Ping Zhang ◽  
Maomao Wang

SUMMARY Southwest (SW) China is located in a transition site from the active Tibetan Plateau to the stable Yangtze craton, which has complicated tectonic deformation and severe seismic hazards. We combine data from ambient noise, teleseismic body and surface waves, and petroleum wells to better constrain the crustal shear-velocity structure in SW China. We jointly invert the Rayleigh wave dispersion (5–40 s period), Rayleigh wave ZH ratio (20–60 s period), and P-wave receiver function for 114 permanent stations with a stepwise linearized joint inversion method. Compared to previous tomography results, we observe higher shear velocity in the sedimentary rocks within the Sichuan Basin, which is consistent with sonic logging measurements. Our model reveals widespread low-velocity zones in the mid-lower crust, and their boundaries correlate well with major fault systems. Between two main mid-crustal low-velocity channels, a prominent high-velocity region surrounded by earthquakes is observed in the inner zone of the Emeishan large igneous province (ELIP) and around the Anninghe-Zemuhe fault zone. These observations are comparable to regional tomography results using very dense arrays. Based on the results, we suggest that mid-lower crustal ductile flow and upper-crustal rigid fault movement play equally important roles in controlling the regional deformation styles and earthquake distribution in SW China. Our results also resolve thick crust-mantle transition zones beneath the eastern Tibetan Plateau and the inner zone of the ELIP due to ‘top-down’ and ‘bottom-up’ crust-mantle interactions, respectively. Our new model can serve as a reference crustal model of future high resolution model construction in SW China.


2020 ◽  
Vol 10 (15) ◽  
pp. 5136 ◽  
Author(s):  
Zijian Ge ◽  
Shulin Pan ◽  
Jingye Li

In shale gas development, fracture density is an important lithologic parameter to properly characterize reservoir reconstruction, establish a fracturing scheme, and calculate porosity and permeability. The traditional methods usually assume that the fracture reservoir is one set of aligned vertical fractures, embedded in an isotropic background, and estimate some alternative parameters associated with fracture density. Thus, the low accuracy caused by this simplified model, and the intrinsic errors caused by the indirect substitution, affect the estimation of fracture density. In this paper, the fractured rock of monoclinic symmetry assumes two non-orthogonal vertical fracture sets, embedded in a transversely isotropic background. Firstly, assuming that the fracture radius, width, and orientation are known, a new form of P-wave reflection coefficient, in terms of weak anisotropy (WA) parameters and fracture density, was obtained by substituting the stiffness coefficients of vertical transverse isotropic (VTI) background, normal, and tangential fracture compliances. Then, a linear amplitude versus offset and azimuth (AVOA) inversion method, of WA parameters and fracture density, was constructed by using Bayesian theory. Tests on synthetic data showed that WA parameters, and fracture density, are stably estimated in the case of seismic data containing a moderate noise, which can provide a reliable tool in fracture prediction.


Geophysics ◽  
2004 ◽  
Vol 69 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Thomas M. Daley ◽  
Ernest L. Majer ◽  
John E. Peterson

Multiple seismic crosswell surveys have been acquired and analyzed in a fractured basalt aquifer at Idaho National Engineering and Environmental Laboratory. Most of these surveys used a high‐frequency (1000–10,000 Hz) piezoelectric seismic source to obtain P‐wave velocity tomograms. The P‐wave velocities range from less than 3200 m/s to more than 5000 m/s. Additionally, a new type of borehole seismic source was deployed as part of the subsurface characterization program at this contaminated groundwater site. This source, known as an orbital vibrator, allows simultaneous acquisition of P‐ and S‐waves at frequencies of 100 to 400 Hz, and acquisition over larger distances. The velocity tomograms show a relationship to contaminant transport in the groundwater; zones of high contaminant concentration are coincident with zones of low velocity and high attenuation and are interpreted to be fracture zones at the boundaries between basalt flows. The orbital vibrator data show high Vp/Vs values, from 1.8 to 2.8. In spite of the lower resolution of orbital vibrator data, these data were sufficient for constraining hydrologic models at this site while achieving imaging over large interwell distances. The combination of piezoelectric data for closer well spacing and orbital vibrator data for larger well spacings has provided optimal imaging capability and has been instrumental in our understanding of the site aquifer's hydrologic properties and its scale of heterogeneity.


2021 ◽  
Vol 11 (8) ◽  
pp. 3571
Author(s):  
Genggeng Wen ◽  
Kuiyuan Wan ◽  
Shaohong Xia ◽  
Huilong Xu ◽  
Chaoyan Fan ◽  
...  

The detailed studies of converted S-waves recorded on the Ocean Bottom Seismometer (OBS) can provide evidence for constraining lithology and geophysical properties. However, the research of converted S-waves remains a weakness, especially the S-waves’ inversion. In this study, we applied a travel-time inversion method of converted S-waves to obtain the crustal S-wave velocity along the profile NS5. The velocities of the crust are determined by the following four aspects: (1) modelling the P-wave velocity, (2) constrained sediments Vp/Vs ratios and S-wave velocity using PPS phases, (3) the correction of PSS phases’ travel-time, and (4) appropriate parameters and initial model are selected for inversion. Our results show that the vs. and Vp/Vs of the crust are 3.0–4.4 km/s and 1.71–1.80, respectively. The inversion model has a similar trend in velocity and Vp/Vs ratios with the forward model, due to a small difference with ∆Vs of 0.1 km/s and ∆Vp/Vs of 0.03 between two models. In addition, the high-resolution inversion model has revealed many details of the crustal structures, including magma conduits, which further supports our method as feasible.


Author(s):  
Michael Bostock ◽  
Alexandre Plourde ◽  
Doriane Drolet ◽  
Geena Littel

ABSTRACT High-resolution earthquake locations and structural inversions using body waves rely on precise delay-time measurements. Subsample accuracy can be realized for P waves using multichannel cross correlation (MCCC), as developed by VanDecar and Crosson (1990), which exploits redundancy in pairwise cross correlations to determine delays between similar waveforms in studies of mantle structure using teleseismic sources (common source and multiple stations) and regional studies of structure and seismicity (multiple sources and common station). For regional S waves, alignment is complicated by the additional degree of freedom in waveform polarity that is expressed for sources with different moment tensors. Here, we recast MCCC within a principal component framework and demonstrate the equivalence between maximizing waveform correlation and minimization of various singular value–based objective functions for P waves. The singular-value framework is more general and leads naturally to an MCCC linear system for S waves that possesses an order of magnitude greater redundancy than that for P waves. Robust L1 solution of the system provides an effective means of mitigating outliers at the expense of subsample precision. Residual time shifts associated with higher-order singular vectors are employed in an iterative adaptive alignment that achieves subsample resolution. We demonstrate application of the approach on a seismicity cluster within the northern Cascadia crustal fore-arc.


2020 ◽  
Author(s):  
Sepideh Karimi ◽  
Adam Baig ◽  
Aaron Booterbaugh ◽  
Yoones Vaezi ◽  
Mark Stacey ◽  
...  

<p>Seismicity potentially induced through wastewater disposal, hydraulic fracture completion, or other industrial operations, has been a cause for increasing public concern over the last decade. Monitoring for this activity has focussed on the problems of location and characterization, often to a relatively rough degree of precision. Regulations typically spell out responses for operators should an event exceed a magnitude threshold within a specified distance of their facilities. While this type of monitoring is critical for ensuring injections be conducted effectively while minimizing potential damage from shaking and public alarm, it often leaves many unanswered questions in terms of the underlying processes.</p><p>Understanding these questions entails that we demand more out of the seismic networks, essentially upgrading the data products to a “next generation” level.  The data from the network needs to be used to provide a detailed understanding of critical geological structures and geomechanics of the study area. This goal is facilitated through both a densification of hardware and a higher order of event processing. High-precision locations delivered through relative relocation methodologies delineate slipping fault structures, often resolving previously unknown features. Moment tensor inversion processing also helps reveal the orientations of faults and provides information on stress in the region. The resolution of these structures provides critical insight into understanding how a field is reacting.</p><p>We illustrate the application of this “next-generation” seismicity monitoring system to the Delaware Basin in West Texas, where we have deployed a network of 25 broadband seismometers complementing monitoring from TexNet and other networks. Despite being an exceptionally challenging recording environment, by aggregating all of these data we obtain a high-resolution catalog of earthquake hypocenters delineating a number of fault features. Inverting the stresses from the moment tensors of the highest-quality events shows a dominantly normal stress regime and tangibly resolves a rotation of axes transitioning across the basin. We illustrate both the logistical and processing requirements necessary for timely delivery of results highlighting the dynamics of seismicity in an active study area.</p>


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 231-240 ◽  
Author(s):  
Lasse Amundsen ◽  
Arne Reitan

At the boundary between two solid media in welded contact, all three components of particle velocity and vertical traction are continuous through the boundary. Across the boundary between a fluid and a solid, however, only the vertical component of particle velocity is continuous while the horizontal components can be discontinuous. Furthermore, the pressure in the fluid is the negative of the vertical component of traction in the solid, while the horizontal components of traction vanish at the interface. Taking advantage of this latter fact, we show that total P‐ and S‐waves can be computed from the vertical component of the particle velocity recorded by single component geophones planted on the sea floor. In the case when the sea floor is transversely isotropic with a vertical axis of symmetry, the computation requires the five independent elastic stiffness components and the density. However, when the sea floor material is fully isotropic, the only material parameter needed is the local shear wave velocity. The analysis of the extraction problem is done in the slowness domain. We show, however, that the S‐wave section can be obtained by a filtering operation in the space‐frequency domain. The P‐wave section is then the difference between the vertical component of the particle velocity and the S‐wave component. A synthetic data example demonstrates the performance of the algorithm.


Geophysics ◽  
1994 ◽  
Vol 59 (12) ◽  
pp. 1868-1881 ◽  
Author(s):  
Huasheng Zhao ◽  
Bjørn Ursin ◽  
Lasse Amundsen

We present an inversion method for determining the velocities, densities, and layer thicknesses of a horizontally stratified medium with an acoustic layer at the top and a stack of elastic layers below. The multioffset reflection response of the medium generated by a compressional point source is transformed from the time‐space domain into the frequency‐wavenumber domain where the inversion is performed by minimizing the difference between the reference data and the modeled data using a least‐squares technique. The forward modeling is based on the reflectivity method where the solution for each frequency‐wavenumber component is found by computing the generalized reflection and transmission matrices recursively. The gradient of the objective function is computed from analytical expressions of the Jacobian matrix derived directly from the recursive modeling equations. The partial derivatives of the reflection response of the stratified medium are then computed simultaneously with the reflection response by layer‐recursive formulas. The limited‐aperture and discretization effects in time and space of the reference data are included by applying a pair of frequency and wavenumber dependent filters to the predicted data and to the Jacobian matrix at each iteration. Numerical experiments performed with noise‐free synthetic data prove that the proposed inversion method satisfactorily reconstructs the elastic parameters of a stratified medium. The low‐frequency trends of the S‐wave velocity and density are found when the initial P‐wave velocity model gives approximately correct traveltimes. The convergence of the iterative minimization algorithm is fast.


2021 ◽  
Author(s):  
Savvaidis Alexandros ◽  
Roselli Pamela

<p>In the scope to investigate the possible interactions between injected fluids, subsurface geology, stress field and triggering earthquakes, we investigate seismic source parameters related to the seismicity in West Texas (USA). The analysis of seismic moment tensor is an excellent tool to understand earthquake source process kinematics; moreover, changes in the fluid volume during faulting leads to existence of non-double-couple (NDC) components (Frohlich, 1994; Julian et al., 1998; Miller et al., 1998). The NDC percentage in the source constitutes the sum of absolute ISO and CLVD components so that %NDC= % ISO + %CLVD and %ISO+%CLVD+%DC=100%. It is currently known that the presence of NDC implies more complex sources (mixed shear-tensile earthquakes) correlated to fluid injections, geothermal systems and volcano-seismology where induced and triggered seismicity is observed.</p><p>With this hypothesis, we analyze the micro-earthquakes (M <2 .7) recorded by the Texas Seismological Network (TexNet) and a temporary network constituted by 40 seismic stations (equipped by either broadband or 3 component geophones). Our study area is characterized by Northwest-Southeast faults that follow the local stress/field (SH<sub>max</sub>) and the geological characteristic of the shallow basin structure of the study area. After a selection based on signal-to-noise ratio, we filter (1-50 Hz) the seismograms and estimate P-wave pulse polarities and the first P-wave ground displacement pulse in time domain. Then, we perform the full moment tensor analysis by using hybridMT technique (Andersen, 2001; Kwiatek et al., 2016) with a detailed 1D velocity model. The key parameter is the polarity/area of the first P-wave ground displacement pulse in time domain. Uncertainties of estimated moment tensors are expressed by normalized root-mean-square (RMS errors) between theoretical and estimated amplitudes (Vavricuk et al., 2014). We also evaluate the quality of the seismic moment tensors by bootstrap and resampling. In our preliminary results we obtain NDC percentage (in terms of %ISO and %CLVD components), Mw, seismic moment, P, T and B axes orientation for each source inverted.</p>


Sign in / Sign up

Export Citation Format

Share Document