O-157 Micro-Computed Tomography of the adult mouse ovary: an in-silico 3D reconstruction of folliculogenesis

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
G Fiorentino ◽  
A Parrilli ◽  
S Garagna ◽  
M Zuccotti

Abstract Study question Which are the spatial dynamics of follicles recruitment and growth inside the ovary? Summary answer 3D micro-Computed Tomography (microCT) shows a simultaneous and homogeneous distribution of follicle recruitment all-over the cortex,and subsequent growth within the same ovarian region. What is known already In the mouse ovary, folliculogenesis progresses from the primordial type 1 (T1) to the fully-grown T8 follicle. Most of our knowledge of the folliculogenetic process has been obtained by disaggregating the ovary into its functional units (i.e., follicles and oocytes), thus losing the complexity of the whole histo-functional context. To date, few studies employed 3D imaging approaches to gain information on the inside 3D ovary organisation. MicroCT is the only technique that combines a high spatial resolution (down to ∼1 µm) with the production of a true 3D organ reconstruction, with cubic voxels and isotropic resolution.  Study design, size, duration Three ovaries of three different adult mice were treated with the contrast agent and then imaged with microCT. A typical experiment required a total of 35 man/h from ovaries isolation to completion of X-ray scanning, and 24 man/h for follicles classification and mapping. Participants/materials, setting, methods Three ovaries of three different 8-week-old CD1 mice were fixed in 4% Paraformaldehyde and treated with Lugol’s solution for 3 hr at RT. Ovaries were scanned with Skyscan 1172 (Bruker) using a 1.5 µm/pixel resolution. MicroCT sections were processed with Fiji ImageJ (NIH), and 3D rendering of follicles and blood vessels were obtained with Avizo-9 (Thermo Fisher Scientific). ANOVA and Bonferroni post-­hocstatistical analyses were performed with RStudio, considering data significantly different when p < 0.05. Main results and the role of chance Using microCT we built the first in silico3D reconstruction of the tiny mouse ovary, identifying, mapping and counting follicles,from pre-antral secondary T4 (53.2 + 12.7 µm in diameter) to fully-grown antral T8 (321.0 + 21.3 µm), and the corpora lutea.MicroCTbrought up the main functional compartments of the growing follicle, i.e., granulosa and cumulus cells, the antrum, the zona pellucida, and the oocyte with its nucleus. Instead, primordial and primary follicles (T1–T3) could not be observed, perhaps due to the reduced size of their enclosed oocyte and to the absence of a well-formed zona pellucida around the germ cell. In addition, our analysis allowed the visualisation and 3D modelling of the main ovarian vasculature, from the largest vessel that enters the organ at the hilum site (∼150 µm size in diameter)to smaller branches present in the medulla region (∼35 µm). These results show that each of the eight ovarian sectors, virtually segmented along the dorsal-ventral axis,houses an equal number of each follicle type, suggesting a simultaneous and homogeneous distribution of follicle recruitment all-over the cortex,and subsequent growth within the same ovarian region. Limitations, reasons for caution To strengthen the results, the number of ovaries/individuals analysed should be increased. Wider implications of the findings This 3D mapping of follicles and vessels could contribute our understanding of folliculogenesis dynamics, not only under normal conditions, but also during ageing, after hormones or drugs administration, or in the presence of ovarian pathologies.  Trial registration number not applicable

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1729 ◽  
Author(s):  
Saulius Drukteinis ◽  
Vytaute Peciuliene ◽  
Hagay Shemesh ◽  
Paulius Tusas ◽  
Ruta Bendinskaite

The present study evaluated the porosity distribution of BioRoot RCS/single gutta-percha point (BR/SC) and MTA flow (MF) fillings, which were used as plugs for the apical perforation repair in curved canals of extracted mandibular molars using micro-computed tomography (μCT). Forty mesial root canals of mandibular first molars were shaped with ProTaper NEXT X1–X5 files 2 mm beyond the apex to simulate apical perforations that were randomly divided into two groups (n = 20) according to the material and technique used for the apical plug: BR/SC or MF. The specimens were scanned before and after canal filling at an isotropic resolution of 9.9 μm. The volumetric analysis of voids in the apical 5 mm of the fillings was performed. Data were analyzed using one-way ANOVA with Bonferroni correction (p < 0.05). Micro-computed tomography (µCT) evaluation revealed significant differences between the groups in terms of porosity: the total volume and percentage volume of voids was lower in the BR/SC group in comparison with the MF group (p < 0.05), with the predominance of open pores in both groups. Neither of the materials and/or application techniques were able to produce void-free root fillings in the apical region of artificially perforated curved roots of mandibular molars.


2007 ◽  
Vol 6 (4) ◽  
pp. 7290.2007.00022 ◽  
Author(s):  
Cristian T. Badea ◽  
Laurence W. Hedlund ◽  
Julie F. Boslego Mackel ◽  
Lan Mao ◽  
Howard A. Rockman ◽  
...  

The purpose of this study was to investigate the use of micro–computed tomography (micro-CT) for morphological and functional phenotyping of muscle LIM protein (MLP) null mice and to compare micro-CT with M-mode echocardiography. MLP null mice and controls were imaged using both micro-CT and M-mode echocardiography. For micro-CT, we used a custom-built scanner. Following a single intravenous injection of a blood pool contrast agent (Fenestra VC, ART Advanced Research Technologies, Saint-Laurent, QC) and using a cardiorespiratory gating, we acquired eight phases of the cardiac cycle (every 15 ms) and reconstructed three-dimensional data sets with 94-micron isotropic resolution. Wall thickness and volumetric measurements of the left ventricle were performed, and cardiac function was estimated. Micro-CT and M-mode echocardiography showed both morphological and functional aspects that separate MLP null mice from controls. End-diastolic and -systolic volumes were increased significantly three- and fivefold, respectively, in the MLP null mice versus controls. Ejection fraction was reduced by an average of 32% in MLP null mice. The data analysis shows that two imaging modalities provided different results partly owing to the difference in anesthesia regimens. Other sources of errors for micro-CT are also analyzed. Micro-CT can provide the four-dimensional data (three-dimensional isotropic volumes over time) required for morphological and functional phenotyping in mice.


Author(s):  
Giulia Fiorentino ◽  
Annapaola Parrilli ◽  
Silvia Garagna ◽  
Maurizio Zuccotti

2013 ◽  
Author(s):  
Agnes Ostertag ◽  
Francoise Peyrin ◽  
Sylvie Fernandez ◽  
Jean-Denis Laredo ◽  
Vernejoul Marie-Christine De ◽  
...  

Reproduction ◽  
2000 ◽  
pp. 127-135 ◽  
Author(s):  
W Bone ◽  
NG Jones ◽  
G Kamp ◽  
CH Yeung ◽  
TG Cooper

The effects of the male antifertility agent ornidazole on glycolysis as a prerequisite for fertilization were investigated in rats. Antifertility doses of ornidazole inhibited glycolysis within mature spermatozoa as determined from the lack of glucose utilization, reduced acidosis under anaerobic conditions and reduced glycolytic enzyme activity. As a consequence, cauda epididymidal spermatozoa from ornidazole-fed rats were unable to fertilize rat oocytes in vitro, with or without cumulus cells, which was not due to transfer of an inhibitor in epididymal fluid with the spermatozoa. Under IVF conditions, binding to the zona pellucida was reduced in spermatozoa from ornidazole-fed males and the spermatozoa did not undergo a change in swimming pattern, which was observed in controls. The block to fertilization could be explained by the disruption of glycolysis-dependent events, since reduced binding to the zona pellucida and a lack of kinematic changes were demonstrated by control spermatozoa in glucose-free media in the presence of respiratory substrates. The importance of glycolysis for binding to, and penetration of, the zona pellucida, and hyperactivation in rats is discussed in relation to the glycolytic production of ATP in the principal piece in which local deprivation of energy may explain the reduced force of spermatozoa from ornidazole-fed males.


2020 ◽  
Vol 45 (3) ◽  
pp. 478-482
Author(s):  
Steven R. Manchester

Abstract—The type material on which the fossil genus name Ampelocissites was established in 1929 has been reexamined with the aid of X-ray micro-computed tomography (μ-CT) scanning and compared with seeds of extant taxa to assess the relationships of these fossils within the grape family, Vitaceae. The specimens were collected from a sandstone of late Paleocene or early Eocene age. Although originally inferred by Berry to be intermediate in morphology between Ampelocissus and Vitis, the newly revealed details of seed morphology indicate that these seeds represent instead the Ampelopsis clade. Digital cross sections show that the seed coat maintains its thickness over the external surfaces, but diminishes quickly in the ventral infolds. This feature, along with the elliptical chalaza and lack of an apical groove, indicate that Ampelocissites lytlensis Berry probably represents Ampelopsis or Nekemias (rather than Ampelocissus or Vitis) and that the generic name Ampelocissites may be useful for fossil seeds with morphology consistent with the Ampelopsis clade that lack sufficient characters to specify placement within one of these extant genera.


2018 ◽  
Author(s):  
Zoë E. Wilbur ◽  
◽  
Arya Udry ◽  
Arya Udry ◽  
Daniel M. Coleff ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 891
Author(s):  
Taylor Flaherty ◽  
Maryam Tamaddon ◽  
Chaozong Liu

Osteochondral scaffold technology has emerged as a promising therapy for repairing osteochondral defects. Recent research suggests that seeding osteochondral scaffolds with bone marrow concentrate (BMC) may enhance tissue regeneration. To examine this hypothesis, this study examined subchondral bone regeneration in scaffolds with and without BMC. Ovine stifle condyle models were used for the in vivo study. Two scaffold systems (8 mm diameter and 10 mm thick) with and without BMC were implanted into the femoral condyle, and the tissues were retrieved after six months. The retrieved femoral condyles (with scaffold in) were examined using micro-computed tomography scans (micro-CT), and the micro-CT data were further analysed by ImageJ with respect to trabecular thickness, bone volume to total volume ratio (BV/TV) ratio, and degree of anisotropy of bone. Statistical analysis compared bone regeneration between scaffold groups and sub-set regions. These results were mostly insignificant (p < 0.05), with the exception of bone volume to total volume ratio when comparing scaffold composition and sub-set region. Additional trends in the data were observed. These results suggest that the scaffold composition and addition of BMC did not significantly affect bone regeneration in osteochondral defects after six months. However, this research provides data which may guide the development of future treatments.


Sign in / Sign up

Export Citation Format

Share Document