scholarly journals Serum omega-3 and omega-6 fatty acid concentrations and natural fertility

2020 ◽  
Vol 35 (4) ◽  
pp. 950-957
Author(s):  
Jamie Stanhiser ◽  
Anne Marie Z Jukic ◽  
Anne Z Steiner

ABSTRACT STUDY QUESTION Are serum omega-3 and omega-6 essential fatty acid concentrations associated with the probability of conceiving? SUMMARY ANSWER There is no strong association between serum concentrations of omega-3 and omega-6 fatty acids and the probability of conceiving naturally. WHAT IS KNOWN ALREADY Omega-3 and omega-6 fatty acid serum concentrations have been shown to play an important role in reproduction in animal models, while conflicting results have been reported in human studies of infertile women. It is unknown to what extent omega fatty acid serum concentrations impact natural fertility. STUDY DESIGN, SIZE, DURATION A nested, case–control study was conducted consisting of 200 participants [fertile: conceived within 3 cycles of attempt (n = 50), subfertile: conceived within 4 and 12 cycles of attempt (n = 100) and infertile: did not conceive within 12 cycles of attempt (n = 50)] randomly selected from the Time to Conceive cohort, a prospective time-to-pregnancy study (2008 to 2015). PARTICIPANTS/MATERIALS, SETTING, METHODS In the Time to Conceive study, women aged 30–44 years who were trying to conceive for <3 months and had no history of infertility were recruited and followed until the end of their pregnancy or ~1 year of pregnancy attempt. For this study, serum collected early in the woman’s pregnancy attempt was analysed for anti-Müllerian hormone (AMH) and omega-3 and omega-6 fatty acid concentrations by liquid chromatography-mass spectrometry. The primary outcome was a positive home pregnancy test. The secondary outcomes were miscarriage and serum AMH level. A discrete-time Cox proportional hazards model was used to estimate the fecundability ratio. The odds ratios for miscarriage were calculated using logistic regression. The association between serum omega fatty acid concentrations and AMH level (natural log transformed) was analysed using Pearson’s Correlation. MAIN RESULTS AND THE ROLE OF CHANCE A total of 200 women provided 1321 cycles for analysis. Mean omega-3, omega-6 and omega-6:omega-3 ratios did not significantly differ between the fertile, subfertile and infertile groups. There were no associations (all fecundability ratios ~1.0) between pregnancy and individual omega-3 fatty acid concentrations, including alpha-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid, or omega-6 fatty acids, including linoleic acid (LA), dihommo-gamma linolenic acid and arachidonic acid. There was no significant association between any individual omega fatty acid serum concentration and the age-adjusted odds of miscarriage. No association was found between any serum omega fatty acid concentration and AMH. LIMITATIONS, REASONS FOR CAUTION This study is limited by the sample size. Omega-3 and omega-6 fatty acid concentrations were derived from serum provided at a single timepoint in the first cycle of enrollment. Serum concentrations may therefore not be representative of all critical timepoints in the menstrual cycle or throughout their attempts to conceive. Additionally, women enrolled in this study were 30 years of age and older, and therefore the findings may not apply to younger women. WIDER IMPLICATIONS OF THE FINDINGS These data would suggest that omega-3 and omega-6 serum levels are not associated with natural fertility or risk of miscarriage. However, due to the above-mentioned limitations, future investigation is still needed to determine whether omega-3 fatty acid supplementation may benefit women planning to conceive naturally. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Division of Reproductive Endocrinology and Infertility at the University of North Carolina at Chapel Hill, by the NIH/NICHD (R21 HD060229-01 and R01 HD067683-01) and, in part, by the Intramural Research Program of the National Institute of Environmental Health Sciences (Z01ES103333). Dr. Jukic received vitamin D supplements for a research study from Theralogix, Inc. The authors have no other conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A

1998 ◽  
Vol 1998 ◽  
pp. 35-35 ◽  
Author(s):  
R.J. Dewhurst ◽  
P.J. King

Ruminant products have been criticised for the possible adverse effects of their saturated fatty acids on human health. Conversely, the omega-3 polyunsaturated fatty acids, notably those in fish oils, have been identified as beneficial components of the human diet. Earlier studies have shown that a small, but useful, amount of forage α-linolenic acid (C18:3), an omega-3 fatty acid, appears in ruminant products (Wood and Enser, 1996). The objective of the current work was to evaluate the range of α-linolenic acid concentrations in laboratory grass silages in order to assess the opportunities to modify ensiling techniques to increase the natural delivery of omega-3 fatty acid from grass silage to milk or meat.


1998 ◽  
Vol 1998 ◽  
pp. 35-35
Author(s):  
R.J. Dewhurst ◽  
P.J. King

Ruminant products have been criticised for the possible adverse effects of their saturated fatty acids on human health. Conversely, the omega-3 polyunsaturated fatty acids, notably those in fish oils, have been identified as beneficial components of the human diet. Earlier studies have shown that a small, but useful, amount of forage α-linolenic acid (C18:3), an omega-3 fatty acid, appears in ruminant products (Wood and Enser, 1996). The objective of the current work was to evaluate the range of α-linolenic acid concentrations in laboratory grass silages in order to assess the opportunities to modify ensiling techniques to increase the natural delivery of omega-3 fatty acid from grass silage to milk or meat.


2021 ◽  
Vol 27 (02) ◽  
pp. 2307-2314
Author(s):  
M. A. K. Mojumdar ◽  
H. M. M. T. Hossain ◽  
A. F. M. J. Uddin ◽  
Meherunnessa

SAU Perilla-1 (Golden perilla BD) is a newly edible oil seed crop variety introduced by Sher-e-Bangla Agricultural University in Bangladesh. Its seed oil is a rich source of unsaturated fatty acid (91%), of which more than 50% is α-linolenic acid (type of omega-3 fatty acid). The estimated ratio of saturated, monounsaturated and polyunsaturated fatty acids was found 1: 2.26: 8.95. Moreover, the α-linolenic acid was detected (50.52%) as the most dominating polyunsaturated fatty acid, which was 4-four times higher than monounsaturated fatty acids in the oil of the crop variety. Fatty acid analysis of oil revealed a ratio (1:2.22) of Omega 6 to Omega 3 fatty acids, which lies within a healthy range as documented by the global scientific community. Compared to other plant seed oils, SAU Perilla-1 oil consists of Linoleic acid (Omega 6 fatty acid, 22.71%) – a component associated with obesity, which is far below the regular oils from soybean, sunflower and corn. Therefore, our findings indicated that SAU Perilla-1 seed is one of the best edible sources of plant oils rich in essential fatty acids conducive to human health.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jhih-Hang Jiang ◽  
Karl A. Hassan ◽  
Stephanie L. Begg ◽  
Thusitha W. T. Rupasinghe ◽  
Varsha Naidu ◽  
...  

ABSTRACT Free fatty acids hold important immune-modulatory roles during infection. However, the host’s long-chain polyunsaturated fatty acids, not commonly found in the membranes of bacterial pathogens, also have significant broad-spectrum antibacterial potential. Of these, the omega-6 fatty acid arachidonic acid (AA) and the omega-3 fatty acid decosahexaenoic acid (DHA) are highly abundant; hence, we investigated their effects on the multidrug-resistant human pathogen Acinetobacter baumannii. Our analyses reveal that AA and DHA incorporate into the A. baumannii bacterial membrane and impact bacterial fitness and membrane integrity, with DHA having a more pronounced effect. Through transcriptional profiling and mutant analyses, we show that the A. baumannii β-oxidation pathway plays a protective role against AA and DHA, by limiting their incorporation into the phospholipids of the bacterial membrane. Furthermore, our study identified a second bacterial membrane protection system mediated by the AdeIJK efflux system, which modulates the lipid content of the membrane via direct efflux of lipids other than AA and DHA, thereby providing a novel function for this major efflux system in A. baumannii. This is the first study to examine the antimicrobial effects of host fatty acids on A. baumannii and highlights the potential of AA and DHA to protect against A. baumannii infections. IMPORTANCE A shift in the Western diet since the industrial revolution has resulted in a dramatic increase in the consumption of omega-6 fatty acids, with a concurrent decrease in the consumption of omega-3 fatty acids. This decrease in omega-3 fatty acid consumption has been associated with significant disease burden, including increased susceptibility to infectious diseases. Here we provide evidence that DHA, an omega-3 fatty acid, has superior antimicrobial effects upon the highly drug-resistant pathogen Acinetobacter baumannii, thereby providing insights into one of the potential health benefits of omega-3 fatty acids. The identification and characterization of two novel bacterial membrane protective mechanisms against host fatty acids provide important insights into A. baumannii adaptation during disease. Furthermore, we describe a novel role for the major multidrug efflux system AdeIJK in A. baumannii membrane maintenance and lipid transport. This core function, beyond drug efflux, increases the appeal of AdeIJK as a therapeutic target.


2007 ◽  
Vol 19 (1-2) ◽  
pp. 9-19 ◽  
Author(s):  
Joseph R. Hibbeln

The field of omega-3 fatty acid deficiencies as reversible risk factors in major psychiatric disorders has flourished in the last decade. Treatment recommendations of the American Psychiatric Association may be considered for application to more normative states of psychiatric health. Considered here is the proposition that an increased risk of personality disorders, and an increased sense of despair in normative populations, might be considered as symptoms of deficiencies of omega-3 fatty acids. The major changes in the essential fatty acid composition of the food supply, including increased availability of the omega-6 linoleic acid, may be correlated not only with increased risks of homicide, but also increased risks of suicide and suboptimal social cohesion.


ALCHEMY ◽  
2013 ◽  
Author(s):  
Ahmad Ghanaim Fasya ◽  
Rurini Retnowati ◽  
M. Rahman ◽  
Suleman Duengo ◽  
Warsito Warsito

<p>The α-linolenic acid (9,12,15-octadecatrieonic acid) is omega-3 fatty acid that more active than other fatty acids to inhibit cell membrane damages, formation and growth of brain functions, antiinflamatory and prevent several cronic deseases like lung desease and arthrytis. Some research explain that geometri of omega-3 fatty acids had effect on its bioactivity. This research purpose was to isolate α-linolenic acid with geometry <em>Z,Z,Z </em>(<em>9Z,12Z,15Z</em>-oktadekatrienoat).</p><p><em>O. basilicum </em>seeds oil was isolated from <em>O. basilicum </em>seeds using Soxhlet extraction with n-hexane, then hidrolized by 12 % solution of KOH in aquadest. The α-linolenic acid was separated from other fatty acids by urea inclusion methods. The optimum condition of urea inclusion was determined in various temperature     (+ 5, + 3, + 1, + (-1), + (-3), + (-5))<sup>0</sup>C and ratio of fatty acid : urea 1:1; 1:1,5; 1:2; 1:2,5; 1:3; 1:3,5; 1:4.</p><p>From this research, extraction of <em>O. basilicum </em>seeds oil with n-hexane as solvent resulted clear yellow-brown oil with refractive indeks 1,466 and density 0,855 g/mL. Gas Chromatography (GC) analysis of fatty acids hidrolyzed from   <em>O. basilicum </em>oil showed peak at t<sub>R</sub>= 19,949 minutes with relative percentage 70,72 %. Base on Mass Spectrum (MS), the fragmentation of this compound, with  t<sub>R</sub>= 19,949 minutes, was identic with <em>9Z,12Z,15Z</em>-oktadecatrienoic acid.Isolation of α-linolenic acid from other fatty acids using urea inclusion at temperature 0-2 <sup>0</sup>C dan rasio fatty acid: urea 1:1,5 showed nonadduct fraction contains compound with t<sub>R</sub>= 19,980 minutes and relative percentage 88,51 %. Base on Mass Spectrum (MS), the fragmentation of this compound, with t<sub>R</sub>= 19,980 minutes, was identic with <em>9Z,12Z,15Z</em>-oktadecatrienoic acid.</p>


2021 ◽  
Vol 854 (1) ◽  
pp. 012081
Author(s):  
Dragan Sefer ◽  
Stamen Radulovic ◽  
Dejan Peric ◽  
Matija Sefer ◽  
Lazar Makivic ◽  
...  

Abstract Literature data show that the relationship between two groups of polyunsaturated fatty acids in diet, omega 3 acids, whose basic representative is a-linolenic acid (C18: 3 n-3), and omega 6 acids, whose basic representative is linoleic acid (C18: 2 n-6), has a significant role in development of cardiovascular diseases in humans. The optimal ratio of omega 6 to omega 3 fatty acids is around 4:1. In monogastric animals, the fatty acids in feed are absorbed in the gastrointestinal tract largely unchanged. This means the fatty acid profile of the animal’s diet directly reflects the fatty acid profile of the tissue. The daily intake of unsaturated fatty acids can be increased by an adequate animal nutrition strategy. Flaxseed contains ten times more unsaturated (32.26%) than saturated (3.66%) fatty acids. The largest amount of unsaturated fatty acids (about 70%) is a-linolenic acid (ALA), which is a precursor of the entire omega 3 series of fatty acids, and which makes flaxseed an ideal raw material for the production of a wide range of omega 3 enriched products. In order to obtain chicken meat rich in omega 3, an experiment was organized with a specific diet for broilers at fattening. Thanks to the designed animal feed, it was possible to get products (meat, breast, drumstick, liver, subcutaneous fat) with significantly higher amounts of omega 3 fatty acids compared to the same products obtained from broilers fed with conventional mixtures, or with almost the ideal ratio between omega 6 and omega 3 fatty acids.


2007 ◽  
Vol 4 (2) ◽  
pp. 71-78 ◽  
Author(s):  
A D Woodward ◽  
B D Nielsen ◽  
C I O'Connor ◽  
C D Skelly ◽  
S K Webel ◽  
...  

AbstractTwelve mature and six 2-year-old Arabian horses were used to determine the effect of dietary long-chain polyunsaturated omega-3 fatty acid supplementation on plasma fatty acids and lameness. Lameness scores and stride lengths were measured on day 0. Horses were striated and pair-matched according to age, gender, stride length and, for mature horses, lameness score, and each horse was fed either a treatment diet containing 5.95 g of stabilized omega-3 fatty acids plus a fat carrier (FA), for a total of 19.4 g fat, or a control diet containing 49 g of corn oil (CO) for 75 days. Horses were exercised 5 d week− 1, and blood samples were drawn and body weights recorded on days 0, 25, 50 and 75. Lameness scores and stride lengths were recorded again on day 75. Total plasma omega-3 fatty acid concentrations were higher on all days in FA horses than in CO horses. Total plasma omega-6 fatty acids increased from days 0 to 25, remained elevated through day 50 and returned to baseline on day 75 in all horses. The ratio of plasma omega-6:omega-3 fatty acids was lower in FA horses. Horses on FA had increased plasma docosahexaenoic acid (DHA) on days 25, 50 and 75. No difference in walk stride length was noted; however, FA horses tended to have a longer trot stride after supplementation when compared with CO horses. No differences were seen in prostaglandin E2 (PGE2) metabolite or tumour necrosis factor-α as measured in blood serum. In summary, supplementing omega-3 fatty acids increases plasma DHA, although there was no overall increase in omega-3 in FA horses. While a trend to increase trot stride length was seen, no differences in lameness scores between treatments were noted.


OCL ◽  
2020 ◽  
Vol 27 ◽  
pp. 7 ◽  
Author(s):  
Artemis P. Simopoulos

The tissue composition of polyunsaturated fatty acids (PUFA) is important to health and depends on both dietary intake and metabolism controlled by genetic polymorphisms that should be taken into consideration in the determination of nutritional requirements, obesity and chronic disease risk. Experimental and clinical intervention studies suggest that omega-6 and omega-3 fatty acids have opposing physiological and metabolic properties and elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, systemic inflammation and an increase in the tone of the endocannabinoid system. Overweight and obese individuals have higher levels of the arachidonic acid (AA) derived endocannabinoid N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) and an altered pattern of receptor expression. Since endocannabinoids are products of dietary fats, modification of the omega-6 and omega-3 fatty acid intake modulates the endocannabinoids, with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) displacing AA from cell membranes, reducing AEA and 2-AG production, resulting in decrease in appetite and food intake leading to weight loss. Polygenic risk scores reveal susceptibility and an increase risk for obesity. Therefore, persons at risk for obesity will have to lower omega-6 and increase their omega-3 fatty acid intake in order to have a balanced ratio for health. A process needs to be established to define when genomic discoveries such as gene-nutrient-disease associations are “ready” to be evaluated as potential tools for personalized nutrition to improve public health.


Sign in / Sign up

Export Citation Format

Share Document