DUSP16 IS A NOVEL IBD GENE IMPLICATED IN THE REGULATION OF DIFFERENTIATION AND HOMEOSTASIS OF INTESTINAL EPITHELIAL CELLS

2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S29-S30
Author(s):  
Jessy Ntunzwenimana ◽  
Azadeh Alikashani ◽  
Claudine Beauchamp ◽  
Jean Paquette ◽  
Gabrielle Boucher ◽  
...  

Abstract Inflammatory bowel disease (IBD) are chronic inflammatory diseases including Crohn’s disease (CD) and ulcerative colitis (UC). More than 200 genomic regions have been identified and validated (association values〈 5x10-8) to be associated with CD, UC or IBD. These regions may contain multiple genes and the current challenge lies in identifying the causal gene in each of these. To address this problem, we performed a functional genomic screen of 145 genes from validated IBD loci, in a relevant intestinal epithelial cell model (HT-29). The results of this transcriptome-based screening revealed that the candidate IBD gene DUSP16 (a dual specificity phosphatase targeting MAP kinases (MAPKs) phosphorylation) as well as the known IBD gene KSR1 (a scaffold protein regulating the spatiotemporal activation of the ERK) regulate the expression of genes involved in intestinal differentiation and homeostasis. They induce, among others, the expression of the PIGR gene that encodes the polymeric immunoglobulin receptor. PIGR plays a role in transporting dimeric IgA molecules from the basolateral membrane of epithelial cells to the intestinal lumen, via transcytosis, where they play an essential role in protecting the epithelium against intestinal pathogens. Our hypothesis is that DUSP16 and KSR1 modulate the activity of MAPKs in intestinal epithelial cells to induce PIGR expression, thus participating in the maintenance of homeostasis of the intestinal barrier. To better understand how DUSP16 modulates the expression of PIGR, we used an approach of over- expression (cDNA) and knockdown (shRNA) of DUSP16 in HT-29 cells. Our results confirmed that DUSP16 induction increases the expression of PIGR, whereas a knockdown of DUSP16 reduces the basal level of PIGR. Next we confirmed by Western Blot that the induction of DUSP16 was accompanied by a decrease in MAPK phosphorylation. The involvement of MAPKs was also confirmed through the use of chemical inhibitors specific for each MAPK, with inhibition of ERK and p38 showing the strongest induction of PIGR expression. We are currently analyzing known functional mutants of DUSP16 and KSR1 to determine their impact on MAPK activity and on PIGR expression. This work supports a role for PIGR in disease pathogenesis, adding to two recent studies that documented that patients suffering from UC accumulated somatic mutations in a group of genes regulating the expression of PIGR by Interleukin 17. The mutated genes, including PIGR, were positively selected in inflamed tissues, indicating the importance of the biological function occupied by this gene in the maintenance of homeostasis. In conclusion, our study successfully identified functional links between two genes from independent IBD loci, and suggests that these DUSP16 and KSR1 play a role in the process of epithelial transcytosis and the development of IBD.

2002 ◽  
Vol 283 (1) ◽  
pp. C31-C41 ◽  
Author(s):  
Humberto B. Jijon ◽  
William J. Panenka ◽  
Karen L. Madsen ◽  
Howard G. Parsons

The intracellular pathways that regulate intestinal epithelial gene expression are poorly understood. In this study we examined the roles of extracellular signal-regulated kinase (ERK) and p38 in the expression of interleukin-8 (IL-8) and intercellular adhesion molecule-1 (ICAM-1) using the human intestinal cell line HT-29. HT-29 cells were treated with tumor necrosis factor-α (TNF-α) in the presence or absence of ERK and p38 pathway inhibitors. TNF-α treatment resulted in increased IL-8 and ICAM-1 protein and mRNA synthesis, increased ERK and p38 activity, and activation of the transcription factors activator protein-1 (AP-1) and nuclear factor-κB (NF-κB). Inhibition of the ERK and p38 pathways attenuated IL-8 secretion but did not alter ICAM-1 expression. Furthermore, AP-1 and NF-κB DNA binding was not affected by ERK and p38 inhibition. In contrast, ERK and p38 inhibition resulted in the accelerated degradation of the IL-8 mRNA, suggesting that in HT-29 cells, p38 and ERK contribute to TNF-α-stimulated IL-8 secretion by intestinal epithelial cells via a posttranscriptional mechanism that involves stabilization of the IL-8 transcript.


2005 ◽  
Vol 73 (7) ◽  
pp. 4214-4221 ◽  
Author(s):  
Elizabeth Miltner ◽  
Koorosh Daroogheh ◽  
Parmod K. Mehta ◽  
Suat L. G. Cirillo ◽  
Jeffrey D. Cirillo ◽  
...  

ABSTRACT Invasion of intestinal mucosa of the host by Mycobacterium avium is a critical step in pathogenesis and likely involves several different bacterial proteins, lipids, glycoproteins, and/or glycolipids. Through the screening of an M. avium genomic library in Mycobacterium smegmatis, we have identified a number of M. avium genes that are associated with increased invasion of mucosal epithelial cells. In order to further investigate these genes, we cloned six of them into a plasmid downstream of a strong mycobacterial promoter (L5 mycobacterial phage promoter), resulting in constitutive expression. Bacteria were then evaluated for increased expression and examined for invasion of HT-29 intestinal epithelial cells. The genes identified encode proteins that are similar to (i) M. tuberculosis coenzyme A carboxylase, (ii) M. tuberculosis membrane proteins of unknown function, (iii) M. tuberculosis FadE20, (iv) a Mycobacterium paratuberculosis surface protein, and (v) M. tuberculosis cyclopropane fatty acyl-phopholipid synthase. The constitutive expression of these genes confers to M. avium the ability to invade HT-29 intestinal epithelial cells with a severalfold increase in efficiency compared to both the wild-type M. avium and M. avium containing the vector alone. Using the murine intestinal ligated loop model, it was observed that the constitutive expression of M. avium proteins has a modest impact on the ability to enter the intestinal mucosa when compared with the wild-type control, suggesting that under in vivo conditions these genes are expressed at higher levels. Evaluation of the expression of these invasion-related genes indicated that under conditions similar to the intestinal lumen environment, the genes identified are upregulated. These data suggest that invasion of the intestinal mucosa is an event that requires the participation of several bacterial factors and the expression of the genes that encode them is less observed under standard laboratory growth conditions.


2001 ◽  
Vol 120 (5) ◽  
pp. A189
Author(s):  
Hiroki Takaya ◽  
Akira Andoh ◽  
Jin Makino ◽  
Takashi Okuno ◽  
Kazunori Hata ◽  
...  

1995 ◽  
Vol 108 (1) ◽  
pp. 369-377 ◽  
Author(s):  
K.L. Soole ◽  
M.A. Jepson ◽  
G.P. Hazlewood ◽  
H.J. Gilbert ◽  
B.H. Hirst

To evaluate whether a glycosylphosphatidylinositol (GPI) anchor can function as a protein sorting signal in polarized intestinal epithelial cells, the GPI-attachment sequence from Thy-1 was fused to bacterial endoglucanase E' (EGE') from Clostridium thermocellum and polarity of secretion of the chimeric EGE'-GPI protein was evaluated. The chimeric EGE'-GPI protein was shown to be associated with a GPI anchor by TX-114 phase-partitioning and susceptibility to phosphoinositol-specific phospholipase C. In polarized MDCK cells, EGE' was localized almost exclusively to the apical cell surface, while in polarized intestinal Caco-2 cells, although 80% of the extracellular form of the enzyme was routed through the apical membrane over a 24 hour period, EGE' was also detected at the basolateral membrane. Rates of delivery of EGE'-GPI to the two membrane domains in Caco-2 cells, as determined with a biotinylation protocol, revealed apical delivery was approximately 2.5 times that of basolateral. EGE' delivered to the basolateral cell surface was transcytosed to the apical surface. These data indicate that a GPI anchor does represent a dominant apical sorting signal in intestinal epithelial cells. However, the mis-sorting of a proportion of EGE'GPI to the basolateral surface of Caco-2 cells provides an explanation for additional sorting signals in the ectodomain of some endogenous GPI-anchored proteins.


2007 ◽  
Vol 70 (1) ◽  
pp. 125-134 ◽  
Author(s):  
MARÍA G. VIZOSO PINTO ◽  
TOBIAS SCHUSTER ◽  
KARLIS BRIVIBA ◽  
BERNHARD WATZL ◽  
WILHELM H. HOLZAPFEL ◽  
...  

Five Lactobacillus plantarum strains and two Lactobacillus johnsonii strains, stemming either from African traditionally fermented milk products or children's feces, were investigated for probiotic properties in vitro. The relationship between the hydrophobic-hydrophilic cell surface and adhesion ability to HT29 intestinal epithelial cells was investigated, and results indicated that especially the L. johnsonii strains, which exhibited both hydrophobic and hydrophilic surface characteristics, adhered well to HT29 cells. Four L. plantarum and two L. johnsonii strains showed high adherence to HT29 cells, generally higher than that of the probiotic control strain Lactobacillus rhamnosus GG. Most strains with high adhesion ability also showed high autoaggregation ability. The two L. johnsonii strains coaggregated well with the intestinal pathogens Listeria monocytogenes Scott A, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Salmonella enterica serovar Typhimurium ATCC 14028. The L. plantarum BFE 1685 and L. johnsonii 6128 strains furthermore inhibited the adhesion of at least two of these intestinal pathogens in coculture with HT29 cells in a strain-dependent way. These two potential probiotic strains also significantly increased interleukin-8 (IL-8) chemokine production by HT29 cells, although modulation of other cytokines, such as IL-1, IL-6, IL-10, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-α), and transforming growth factor β (TGF-β), did not occur. Altogether, our results suggested that L. plantarum BFE 1685 and L. johnsonii BFE 6128 showed good adherence, coaggregated with pathogens, and stimulated chemokine production of intestinal epithelial cells, traits that may be considered promising for their development as probiotic strains.


2001 ◽  
Vol 281 (2) ◽  
pp. G323-G332 ◽  
Author(s):  
M. C. Buresi ◽  
E. Schleihauf ◽  
N. Vergnolle ◽  
A. Buret ◽  
J. L. Wallace ◽  
...  

The thrombin receptor, protease-activated receptor-1 (PAR-1), has wide tissue distribution and is involved in many physiological functions. Because thrombin is in the intestinal lumen and mucosa during inflammation, we sought to determine PAR-1 expression and function in human intestinal epithelial cells. RT-PCR showed PAR-1 mRNA expression in SCBN cells, a nontransformed duodenal epithelial cell line. Confluent SCBN monolayers mounted in Ussing chambers responded to PAR-1 activation with a Cl−-dependent increase in short-circuit current. The secretory effect was blocked by BaCl2and the Ca2+-ATPase inhibitor thapsigargin, but not by the L-type Ca2+channel blocker verapamil or DIDS, the nonselective inhibitor of Ca2+-dependent Cl−transport. Responses to thrombin and PAR-1-activating peptides exhibited auto- and crossdesensitization. Fura 2-loaded SCBN cells had increased fluorescence after PAR-1 activation, indicating increased intracellular Ca2+. RT-PCR showed that SCBN cells expressed mRNA for the cystic fibrosis transmembrane conductance regulator (CFTR) and hypotonicity-activated Cl−channel-2 but not for the Ca2+-dependent Cl−channel-1. PAR-1 activation failed to increase intracellular cAMP, suggesting that the CFTR channel is not involved in the Cl−secretory response. Our data demonstrate that PAR-1 is expressed on human intestinal epithelial cells and regulates a novel Ca2+-dependent Cl−secretory pathway. This may be of clinical significance in inflammatory intestinal diseases with elevated thrombin levels.


1998 ◽  
Vol 274 (5) ◽  
pp. G797-G801 ◽  
Author(s):  
Manabu Nishikawa ◽  
Kenta Takeda ◽  
Eisuke F. Sato ◽  
Tetso Kuroki ◽  
Masayasu Inoue

Nitric oxide (NO) inhibits the respiration of mitochondria and enteric bacteria, particularly under low O2concentration, and induces apoptosis of various types of cells. To gain insight into the molecular role of NO in the intestine, we examined its effects on the respiration, Ca2+status, and expression of Bcl-2 in cultured intestinal epithelial cells (IEC-6). NO reversibly inhibited the respiration of IEC-6 cells, especially under physiologically low O2concentration. Although NO elevated cytosolic Ca2+as determined by the fura 2 method, the cells were fairly resistant to NO. Kinetic analysis revealed that prolonged exposure to NO elevated the levels of Bcl-2 and suppressed the NO-induced changes in Ca2+status of the cells. Because Bcl-2 possesses antiapoptotic function, toxic NO effects might appear minimally in enterocytes enriched with Bcl-2. Thus NO might effectively exhibit its antibacterial action in anaerobic intestinal lumen without inducing apoptosis of Bcl-2-enriched mucosal cells.


2005 ◽  
Vol 289 (1) ◽  
pp. G36-G41 ◽  
Author(s):  
Hua Xu ◽  
Rongji Chen ◽  
Fayez K. Ghishan

Apically expressed intestinal and renal sodium-hydrogen exchangers (NHEs) play a major role in Na+ absorption. Our previous studies on NHE ontogeny have shown that NHE-2 and NHE-3 are expressed at very low levels in young animals. Furthermore, single and/or double NHE-2 and NHE-3 knockout mice display no obvious abnormalities before weaning. These observations suggest that other transporter(s) may be involved in intestinal Na+ absorption during early life. The present studies were designed to clone the novel rat intestinal NHE-8 cDNA and to decipher the NHE-8 protein localization and gene expression pattern during different developmental stages. The rat NHE-8 cDNA has 2,160 bp and encodes a 575-amino acid protein. An antibody against NHE-8 protein was developed. Immunohistochemistry staining indicated apical localization of NHE-8 protein in rat intestinal epithelial cells. The apical localization of NHE-8 was also confirmed by its presence in brush-border membrane and its absence in basolateral membrane preparations. Northern blotting utilizing a NHE-8-specific probe demonstrated higher NHE-8 mRNA expression in young animals compared with adult animals. Western blot analysis revealed a similar pattern. Tissue distribution with multiple human tissue RNA blot showed that NHE-8 was expressed in multiple tissues including the gastrointestinal tract. In conclusion, we have cloned the full-length NHE-8 cDNA from rat intestine and further showed its apical localization in intestinal epithelial cells. We have also shown that NHE-8 gene expression and protein expression were regulated during ontogeny. Our data suggests that NHE-8 may play an important role in intestinal Na+ absorption during early life.


Sign in / Sign up

Export Citation Format

Share Document