scholarly journals Sea-louse abundance on salmon farms in relation to parasite-control policy and climate change

Author(s):  
Sean C Godwin ◽  
Martin Krkosek ◽  
John D Reynolds ◽  
Andrew W Bateman

Abstract The ectoparasitic copepods, sea lice (Lepeophtheirus salmonis and Caligus spp.), are major pests to salmon aquaculture and can also affect the health and survival of wild salmon. Policies exist to protect wild salmon by delousing farmed fish when louse abundance exceeds a threshold, but their effectiveness under future climate change is uncertain. We fitted a Bayesian model for sea-louse population dynamics and management to timeseries data of sea lice on farmed salmon in Pacific Canada and analysed the model under scenarios of warmer climates. We found that in high-temperature years, current parasite control policy becomes ineffective as sea-louse abundance is expected to increase. We simulated two alternative management scenarios and observed that both would decrease average louse counts on farms in high-temperature years relative to the current system but relied on more delousing treatments than are currently performed. We also found evidence that non-salmonids can play a role in louse transmission to farms, as increased farm colonization of Caligus clemensi occurs in April, coincident with wild herring (Clupea pallasii) spawner abundance. Our results highlight the need for careful management of sea lice on salmon farms in warmer years and the importance of policies designed to account for future environmental change.

2020 ◽  
Vol 77 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Stephanie J. Peacock ◽  
Martin Krkošek ◽  
Andrew W. Bateman ◽  
Mark A. Lewis

Parasite transmission between farmed and wild salmon affects the sustainability of salmon aquaculture in Pacific Canada. Understanding and managing parasites in aquaculture is challenged by spatial and temporal variation in transmission dynamics. We developed a mechanistic model that connects sea louse (Lepeoptheirus salmonis) outbreak and control on farmed salmon (Salmo salar) to spatiotemporal dynamics of sea lice on migrating wild juvenile salmon (Oncorhynchus keta and Oncorhynchus gorbuscha). We fitted the model to time series of sea lice on farmed salmon and spatial surveys of juvenile wild salmon in the Broughton Archipelago. We used the parameterized model to evaluate alternative management scenarios based on the resulting sea louse infestations and predicted mortality of wild salmon. Early and coordinated management of sea lice on salmon farms was most effective for controlling outbreaks in wild salmon, while uncoordinated treatments led to a resurgence of sea lice on salmon farms during the juvenile salmon migration. This study highlights the importance of incorporating spatiotemporal variability when considering infectious disease dynamics shared by farmed and wild hosts, particularly when migratory wildlife are involved.


2020 ◽  
Author(s):  
Vina Listiawati ◽  
Haruko Kurihara

Abstract Seagrass ecosystems are classified as one of the most productive ecosystems in coastal waters providing numerous of ecological functions, however various anthropogenic stressors including climate change are impacting these vulnerable habitats. Here, we investigated the independent and combined effects of ocean warming and ocean acidification on plant-herbivore interactions in a tropical seagrass community. Direct and indirect effects of high temperature and high pCO2 on the physiology of the tropical seagrass Thalassia hemprichii and sea urchin Tripneustes gratilla were evaluated. Productivity of seagrass was found to synergistically increase under the combination of high temperature and high pCO2, while sea urchin physiology including feeding rate decreased particularly under high temperature. The present study indicated that future climate change will affect the botom-up and top-down balance leading to a shift to a seagrass-dominated ecosystem, which potentially decrease biodiversity as well as ecosystem functions and services of tropical seagrass meadows.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vina Listiawati ◽  
Haruko Kurihara

AbstractSeagrass ecosystem is one of the most productive ecosystems in coastal waters providing numerous ecological functions and supporting a large biodiversity. However, various anthropogenic stressors including climate change are impacting these vulnerable habitats. Here, we investigated the independent and combined effects of ocean warming and ocean acidification on plant–herbivore interactions in a tropical seagrass community. Direct and indirect effects of high temperature and high pCO2 on the physiology of the tropical seagrass Thalassia hemprichii and sea urchin Tripneustes gratilla were evaluated. Productivity of seagrass was found to increase under high pCO2, while sea urchin physiology including feeding rate decreased particularly under high temperature. The present study indicated that future climate change will affect the bottom-up and top-down balance, which potentially can modify the ecosystem functions and services of tropical seagrass ecosystems.


2019 ◽  
Author(s):  
Gregory A. Backus ◽  
Marissa L. Baskett

AbstractAssisted migration is the translocation of species beyond their historical range to locations that are expected to be more suitable under future climate change. However, a relocated population might fail to establish within its donor community if there is high uncertainty in decision making, climate, and interactions with the recipient ecological community. To quantify the benefit to persistence and risk of establishment failure of assisted migration under different management scenarios, we built a stochastic metacommunity model to simulate several species reproducing, dispersing, and competing on a temperature gradient as temperature increases over time. Without assisted migration, the species in our model were vulnerable to climate change if they had low population sizes, short dispersal, and strong poleword competition. When relocating species that exemplified these traits, assisted migration increased the long-term persistence of the species most when relocating a fraction of the donor population, even if the remaining population was very small or rapidly declining. This suggests that leaving behind a fraction of the population could be a robust approach, allowing managers to repeat assisted migration in case they move the species at the wrong place and wrong time, especially when it is difficult to identify a species’ optimal climate. We found that assisted migration was most beneficial to species with low dispersal ability and least beneficial to species with narrow thermal tolerances, for which assisted migration increased extinction risk on average. Lastly, while relocation did not affect the persistence of non-target species in our simple competitive model, researchers will need to consider a more complete set of community interactions to comprehensively understand invasion potential.


2020 ◽  
Vol 34 (11) ◽  
Author(s):  
Evan M. Howard ◽  
Hartmut Frenzel ◽  
Fayçal Kessouri ◽  
Lionel Renault ◽  
Daniele Bianchi ◽  
...  

2020 ◽  
Author(s):  
Rubén D. Manzanedo ◽  
Peter Manning

The ongoing COVID-19 outbreak pandemic is now a global crisis. It has caused 1.6+ million confirmed cases and 100 000+ deaths at the time of writing and triggered unprecedented preventative measures that have put a substantial portion of the global population under confinement, imposed isolation, and established ‘social distancing’ as a new global behavioral norm. The COVID-19 crisis has affected all aspects of everyday life and work, while also threatening the health of the global economy. This crisis offers also an unprecedented view of what the global climate crisis may look like. In fact, some of the parallels between the COVID-19 crisis and what we expect from the looming global climate emergency are remarkable. Reflecting upon the most challenging aspects of today’s crisis and how they compare with those expected from the climate change emergency may help us better prepare for the future.


2006 ◽  
Vol 106 (3) ◽  
pp. 323-334 ◽  
Author(s):  
Michael B. Jones ◽  
Alison Donnelly ◽  
Fabrizio Albanito

2002 ◽  
Vol 19 ◽  
pp. 179-192 ◽  
Author(s):  
M Lal ◽  
H Harasawa ◽  
K Takahashi

Sign in / Sign up

Export Citation Format

Share Document