scholarly journals Biased stock assessment when using multiple, hardly overlapping, tuning series if fishing trends vary spatially

2009 ◽  
Vol 66 (10) ◽  
pp. 2272-2277 ◽  
Author(s):  
Sarah B. M. Kraak ◽  
Niels Daan ◽  
Martin A. Pastoors

Abstract Kraak, S. B. M., Daan, N., and Pastoors, M. A. 2009. Biased stock assessment when using multiple, hardly overlapping, tuning series if fishing trends vary spatially. – ICES Journal of Marine Science, 66: 2272–2277. Fishing-effort distributions are subject to change, for autonomous reasons and in response to management regulations. Ignoring such changes in a stock-assessment procedure may lead to a biased perception. We simulated a stock distributed over two regions with inter-regional migration and different trends in exploitation and tested the performance of extended survivors analysis (XSA) and a statistical catch-at-age model in terms of bias, when spatially restricted tuning series were applied. If we used a single tuning index that covered only the more heavily fished region, estimates of fishing mortality and spawning-stock biomass were seriously biased. If two tuning series each exclusively covering one region were used (without overlap but together covering the whole area), estimates were also biased. Surprisingly, a moderate degree of overlap of spatial coverage of the two tuning indices was sufficient to reduce bias of the XSA assessment substantially. However, performance was best when one tuning series covered the entire stock area.

Author(s):  
Issam H. Al-Rasady ◽  
Anesh Govender

The Present study assessed the fishery state of longnose trevally (Carangoides chrysophrys) in the North West Arabian Sea. Key population parameters were estimated, and yield and spawning stock biomass per recruit analyses were conducted. The equation presented by Alagaraja (1984) for estimating natural mortality resulted in M = 0.29 year-1 and lead to the best estimate of longevity. Hence this value was used in the yield and spawning stock biomass per recruit analyses. The total mortality (Z) was estimated as 0.39 year-1, based on a catch curve analysis. Length-at- and age-at-50% captures were 38.21cm and 4 years respectively. The yield and spawning biomass per recruit analyses indicate that the current fishing mortality rate (Fcurr) was lower than the fishing mortality corresponding to the maximum yield per recruit (Fmax) and was also higher than the target reference point (F0.1) , suggesting that overfishing, currently, does not occur. However, any increase in the fishing effort in the future may lead to overfishing. 


2008 ◽  
Vol 65 (7) ◽  
pp. 1334-1341 ◽  
Author(s):  
Brian R. MacKenzie ◽  
Jan Horbowy ◽  
Fritz W. Köster

Temperature has a significant positive impact on recruitment of sprat, Sprattus sprattus, in the Baltic Sea. Here we evaluate whether an existing recruitment model for the year classes 1973–1999 can forecast recruitment for five new year classes. The coefficient of variation (CV) of predictions was 5%, and four of five new year classes were within 95% confidence limits of predictions made by the earlier model. We then assimilated climatic, oceanographic, and recruitment linkages and their uncertainty into the standard International Council for the Exploration of the Sea (ICES) assessment procedure to predict key advisory-related variables such as spawning stock biomass (SSB) and landings. These linkages enable a forecast of recruitment earlier than the annual assessment meeting. Forecasts made using the North Atlantic Oscillation to predict the 2006 year class showed that spawner biomass would be 15% lower than spawner biomass calculated using the ICES standard methodology. The difference in perception of future biomass does not affect the advice for the stock because the spawning stock biomass is greater than the critical biomass limit (SSB > BPA). However, when this is not the case or when it is desirable to broaden the ecosystem basis for fisheries management, incorporation of knowledge of recruitment processes may be beneficial.


2003 ◽  
Vol 60 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Daniel S Holland ◽  
Jean-Jacques Maguire

Age-structured models are used to calculate catches and revenues of the principal stocks in the northeast multispecies groundfish fishery over the 1982–1997 period assuming alternative control rules on fishing effort had been employed. Various static levels of nominal effort are compared with controls that maintain fishing mortality below overfishing thresholds for all stocks. An unambiguous result from this analysis is that substantial reductions in fishing effort would have increased the value of the fishery even if resulting increases in spawning stock biomass (SSB) had not increased recruitment. Simple controls on nominal effort designed to maximize revenues would have provided nearly equivalent revenues to those achieved by maintaining fishing mortality for each stock at its individual maximum sustainable yield (FMSY) but would have led to overfishing of some stocks. Without the ability to tune the relative catches across stocks, strict controls on effort designed to prevent overfishing on individual stocks would likely have resulted in significantly lower and more variable revenues. Achieving SSB targets for three stocks would not have been possible given the observed recruitment.


2002 ◽  
Vol 53 (5) ◽  
pp. 835 ◽  
Author(s):  
Flávia M. Lucena ◽  
Carl M. O'Brien ◽  
Enir G. Reis

This paper describes 20 years in the exploitation of the bluefish, Pomatomus saltatrix, in southern Brazil and investigates the effects of the commercial fleets on stock structure. Port samples were obtained from the commercial fisheries based at Rio Grande do Sul for the period 1992–1998. In addition, data derived from the exploitation during the period 1977–1983 (Krug and Haimovici 1991) were included in this analysis. A statistical catch-at-age model is proposed to estimate population size and exploitation rates for both periods of study. This model incorporates both the seasonal characteristic and multi-fleet nature of the P. saltatrix fishery. During the most recent time period, fishery mortality has increased and spawning stock biomass has reduced in comparison to the earlier period 1977–1983. Currently, the exploitation of P. saltatrix relies on fish of all age classes. Adults have been intensively exploited and juveniles may not be abundant enough to maintain the stock at the current high level of exploitation. Management options for the stock are presented based on a redistribution of effort between fleets. Simulations indicate that a ban on fishing in shallow waters for either one or both gears would restore the level of spawning stock biomass.


2015 ◽  
Vol 27 (4) ◽  
pp. 333-340 ◽  
Author(s):  
Stuart Hanchet ◽  
Keith Sainsbury ◽  
Doug Butterworth ◽  
Chris Darby ◽  
Viacheslav Bizikov ◽  
...  

AbstractSeveral recent papers have criticized the scientific robustness of the fisheries management system used by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), including that for Ross Sea toothfish. Here we present a response from the wider CCAMLR community to address concerns and to correct some apparent misconceptions about how CCAMLR acts to promote conservation whilst allowing safe exploitation in all of its fisheries. A key aspect of CCAMLR’s approach is its adaptive feedback nature; regular monitoring and analysis allows for adjustments to be made, as necessary, to provide a robust management system despite the statistical uncertainties inherent in any single assessment. Within the Ross Sea, application of CCAMLR’s precautionary approach has allowed the toothfish fishery to develop in a steady fashion with an associated accumulation of data and greater scientific understanding. Regular stock assessments of the fishery have been carried out since 2005, and the 2013 stock assessment estimated current spawning stock biomass to be at 75% of the pre-exploitation level. There will always be additional uncertainties which need to be addressed, but where information is lacking the CCAMLR approach to management ensures exploitation rates are at a level commensurate with a precautionary approach.


2009 ◽  
Vol 67 (2) ◽  
pp. 258-269 ◽  
Author(s):  
Ernesto Jardim ◽  
Santiago Cerviño ◽  
Manuela Azevedo

Abstract Jardim, E., Cerviño, S., and Azevedo, M. 2010. Evaluating management strategies to implement the recovery plan for Iberian hake (Merluccius merluccius); the impact of censored catch information. – ICES Journal of Marine Science, 67: 258–269. Iberian hake assessment revealed an increase in fishing mortality (F) despite enforcement of a recovery plan. Recent landings exceeded the total allowable catch and discarding rates were high. Alternative management strategies based on F control were evaluated with respect to the probability of recovering spawning-stock biomass (SSB), expected profits, and robustness to uncertainty on catch information and stock dynamics. Results showed that the use of censored catch data, i.e. excluding the Gulf of Cádiz or discards, may lead to inappropriate conclusions. Reducing fishing mortality was necessary for SSB to recover. An Fmax strategy with discard reduction showed the highest probability of rebuilding SSB and led the fishery to sustainable exploitation, with an expected %SPR of 30–40% in 2025, mean individual weight in the landings of 450 g in 2015, and yield increasing by >20%. Because of uncertainty in the estimates of maximum sustainable yield, management strategies based on FMSY were least robust, but all strategies were robust to alternative stock–recruit models.


Author(s):  
B. Draganik ◽  
S. Ivanow ◽  
Maciej Tomczak ◽  
B. Maksimov ◽  
I. Psuty-Lipska

Status of exploited Baltic flounder stocks in the southern Baltic area (ICES SD 26)Flounder is the target of directed fisheries in coastal waters and is a bycatch of cod fishing. Flounder were fished in the Baltic region ICES Subdivision 26 (SD 26) by Polish and Soviet fleets until 1991. Since that time political and economic changes have altered the exploitation structure of that area, leading to increased fishing effort and flounder catches. This report, which is based on Polish, Russian and Lithuanian data, presents a review of long term changes in flounder fisheries in SD 26, and describes the current status of flounder exploitation there. The eXtended Survival Analysis (XSA) method was used to assess the stock. The results indicate that the flounder stock in SD 26 is in good condition and that the spawning stock biomass (SSB) is at a consistently high level. However, the estimated mean fishing mortality (F


2011 ◽  
Vol 62 (8) ◽  
pp. 927 ◽  
Author(s):  
Chantell R. Wetzel ◽  
André E. Punt

Limited data are a common challenge posed to fisheries stock assessment. A simulation framework was applied to examine the impact of limited data and data type on the performance of a widely used catch-at-age stock-assessment method (Stock Synthesis). The estimation method provided negatively biased estimates of current spawning-stock biomass (SSB) relative to the unfished level (final depletion) when only recent survey indices were available. Estimation of quantities of management interest (unfished SSB, virgin recruitment, target fishing mortality and final depletion) improved substantially even when only minimal-length-composition data from the survey were available. However, the estimates of some quantities (final depletion and unfished SSB) remained biased (either positively or negatively) even in the scenarios with the most data (length compositions, age compositions and survey indices). The probability of overestimating yield at the target SSB relative to the true such yield was ~50%, a risk-neutral result, for all the scenarios that included length-composition data. Our results highlight the importance of length-composition data for the performance of an age-structured assessment model, and are encouraging for the assessment of data-limited stocks.


2009 ◽  
Vol 66 (9) ◽  
pp. 1999-2011 ◽  
Author(s):  
Cindy J. G. van Damme ◽  
Loes J. Bolle ◽  
Clive J. Fox ◽  
Petter Fossum ◽  
Gerd Kraus ◽  
...  

Abstract van Damme, C. J. G., Bolle, L. J., Fox, C. J., Fossum, P., Kraus, G., Munk, P., Rohlf, N., Witthames, P. R., and Dickey-Collas, M. 2009. A reanalysis of North Sea plaice spawning-stock biomass using the annual egg production method. – ICES Journal of Marine Science, 66: 1999–2011. Uncertainty about the quality of current virtual population analysis-based stock assessment for North Sea plaice (Pleuronectes platessa) has led to various abundance indices. We compared biomass estimates from the annual egg production (AEP) method with current stock assessments based on catch-at-age to validate the current and historical perception of exploitation. The AEP method was also used to investigate the dynamics of the spatial components of plaice in the North Sea. We corrected for fecundity down-regulation and changes in sex ratio. Estimates from both methods were similar in trend and absolute biomass. On the Dogger Bank, there was a dramatic decline in biomass from 1948 and 1950 to 2004, and in the Southern Bight, the stock appeared to increase from 1987 and 1988 to 2004, although not reaching the historically high levels of 1948 or 1950. The timing of spawning of North Sea plaice does not appear to have changed throughout the period of high exploitation. We conclude that the AEP method is a useful way to hindcast the spatial dynamics of heavily exploited flatfish stocks.


2018 ◽  
Vol 75 (6) ◽  
pp. 2016-2024
Author(s):  
Hiroshi Okamura ◽  
Yuuho Yamashita ◽  
Momoko Ichinokawa ◽  
Shota Nishijima

Abstract Age-structured models have played an important role in fisheries stock assessment. Although virtual population analysis (VPA) was once the most widely used stock assessment model for when catch-at-age information is available, (hierarchical) statistical catch-at-age analysis (SCAA) is about to take that position. However, the estimation performance of different age-structured models has not been evaluated sufficiently, especially in cases where there are few available abundance indices. We examined the performance of VPA and SCAA using simulation data in which only the abundance indices of spawning stock biomass and recruitment were available. The simulation demonstrated that VPA with the ridge penalty selected by minimizing retrospective bias provided near-unbiased abundance estimates without catch-at-age error and moderately biased estimates with catch-at-age error, whereas SCAA with random-walk selectivity suffered from problems in estimating parameters and population states. Without sufficient information on abundance trends, naïvely using SCAA with many random effects should be done cautiously, and comparing results from various age-structured models via simulation tests will be informative in selecting an appropriate stock assessment model.


Sign in / Sign up

Export Citation Format

Share Document