scholarly journals Impact of an artificial structure on the benthic community composition in the southern North Sea: assessed by a morphological and molecular approach

2018 ◽  
Vol 77 (3) ◽  
pp. 1167-1177 ◽  
Author(s):  
Lise Klunder ◽  
Marc S S Lavaleye ◽  
Amalia Filippidi ◽  
Judith D L van Bleijswijk ◽  
Gert-Jan Reichart ◽  
...  

Abstract Man-made structures in the North Sea are known to act as artificial reefs by providing a habitat for sessile epifauna in a predominantly soft sediment environment. This epifauna is hypothesized to cast a so-called “shadow” over the soft sediment ecosystem by altering the nutrient composition in the overlying water column. In addition, the structure itself could alter currents and thereby influence the deposition and erosion of the sediments in the wake of the platform. This study aims to assess the long-term effects of a gas platform in the southern North Sea on the surrounding benthic community by both morphological and molecular identification of benthic species. The species composition and a set of abiotic factors of the sediment around a gas platform were assessed along four transects. Differences for the abiotic factors were found in the closer vicinity of the platform in the direction corresponding to the predominant currents. The number of benthic fauna families found in the molecular approach were on average three times higher than for the morphological approach. Both approaches showed that small differences occurred primarily due to changes in sedimentary organic matter content. Differences in species composition were more pronounced between transects rather than between distances from the platform.

2020 ◽  
Vol 77 (3) ◽  
pp. 1247-1247 ◽  
Author(s):  
Lise Klunder ◽  
Marc S S Lavaleye ◽  
Amalia Filippidi ◽  
Judith D L van Bleijswijk ◽  
Gert-Jan Reichart ◽  
...  

2016 ◽  
Vol 13 (3) ◽  
pp. 841-863 ◽  
Author(s):  
H. Brenner ◽  
U. Braeckman ◽  
M. Le Guitton ◽  
F. J. R. Meysman

Abstract. It has been previously proposed that alkalinity release from sediments can play an important role in the carbonate dynamics on continental shelves, lowering the pCO2 of seawater and hence increasing the CO2 uptake from the atmosphere. To test this hypothesis, sedimentary alkalinity generation was quantified within cohesive and permeable sediments across the North Sea during two cruises in September 2011 (basin-wide) and June 2012 (Dutch coastal zone). Benthic fluxes of oxygen (O2), alkalinity (AT) and dissolved inorganic carbon (DIC) were determined using shipboard closed sediment incubations. Our results show that sediments can form an important source of alkalinity for the overlying water, particularly in the shallow southern North Sea, where high AT and DIC fluxes were recorded in near-shore sediments of the Belgian, Dutch and German coastal zone. In contrast, fluxes of AT and DIC are substantially lower in the deeper, seasonally stratified, northern part of the North Sea. Based on the data collected, we performed a model analysis to constrain the main pathways of alkalinity generation in the sediment, and to quantify how sedimentary alkalinity drives atmospheric CO2 uptake in the southern North Sea. Overall, our results show that sedimentary alkalinity generation should be regarded as a key component in the CO2 dynamics of shallow coastal systems.


2016 ◽  
Vol 181 ◽  
pp. 284-293 ◽  
Author(s):  
Julia Meyer ◽  
Ingrid Kröncke ◽  
Alexander Bartholomä ◽  
Joachim W. Dippner ◽  
Ulrike Schückel

2011 ◽  
Vol 66 (3) ◽  
pp. 345-361 ◽  
Author(s):  
W. Puls ◽  
K.-H. van Bernem ◽  
D. Eppel ◽  
H. Kapitza ◽  
A. Pleskachevsky ◽  
...  

Author(s):  
Daniela Ciccarelli ◽  
Cleusa Bona

AbstractCoastal dunes are characterised by strong interactions between biotic and abiotic factors along a short gradient from the shoreline to the inland region. We carried out an ecological analysis of the vegetation in a protected area of the Italian coast to evaluate the relationships among species abundance, the occurrence of morphoanatomical traits related to leaves, stems, and roots, and soil variables. Three transects were established perpendicular to the shoreline, with 27 plots distributed in the frontal dunes, backdunes, and temporarily wet dune slacks. An analysis based on community-weighted mean values showed that the pioneer communities of the frontal dunes were dominated by ruderals that are well adapted to the harsh ecological conditions of these environments, showing succulent leaves, high limb thickness values, and low values for leaf dry matter content (LDMC). The backdune vegetation was a mosaic of annual herbaceous and perennial shrub communities showing both ruderal and stress-tolerant strategies (clonality, sclerified leaves, high LDMC values, root phenolics) consistent with less extreme ecological conditions. The dune slack areas were dominated by plants showing adaptations to both arid and flooded environments, such as C4 photosynthesis, amphistomatic leaves, and abundant aerenchyma in the roots. The invasive status, C4 photosynthesis, leaf trichomes, and aerenchyma in the roots were significantly correlated with soil humidity, organic matter content, and pH. These results demonstrate the usefulness of anatomical traits (including root system traits) in understanding the functional strategies adopted by plants. Invasive species tended to occupy plots with high levels of soil moisture, suggesting an avoidance strategy for the harsh environmental conditions of coastal sand dunes. Finally, we suggest including information regarding root systems into coastal monitoring programs because they are directly linked to soil parameters useful in coastal dune management and protection.


2021 ◽  
pp. 1-13
Author(s):  
Jasper Verhaegen ◽  
Hilmar von Eynatten ◽  
István Dunkl ◽  
Gert Jan Weltje

Abstract Heavy mineral analysis is a long-standing and valuable tool for sedimentary provenance analysis. Many studies have indicated that heavy mineral data can also be significantly affected by hydraulic sorting, weathering and reworking or recycling, leading to incomplete or erroneous provenance interpretations if they are used in isolation. By combining zircon U–Pb geochronology with heavy mineral data for the southern North Sea Basin, this study shows that the classic model of sediment mixing between a northern and a southern source throughout the Neogene is more complex. In contrast to the strongly variable heavy mineral composition, the zircon U–Pb age spectra are mostly constant for the studied samples. This provides a strong indication that most zircons had an initial similar northern source, yet the sediment has undergone intense chemical weathering on top of the Brabant Massif and Ardennes in the south. This weathered sediment was later recycled into the southern North Sea Basin through local rivers and the Meuse, leading to a weathered southern heavy mineral signature and a fresh northern heavy mineral signature, yet exhibiting a constant zircon U–Pb age signature. Thus, this study highlights the necessity of combining multiple provenance proxies to correctly account for weathering, reworking and recycling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mulalo M. Muluvhahothe ◽  
Grant S. Joseph ◽  
Colleen L. Seymour ◽  
Thinandavha C. Munyai ◽  
Stefan H. Foord

AbstractHigh-altitude-adapted ectotherms can escape competition from dominant species by tolerating low temperatures at cooler elevations, but climate change is eroding such advantages. Studies evaluating broad-scale impacts of global change for high-altitude organisms often overlook the mitigating role of biotic factors. Yet, at fine spatial-scales, vegetation-associated microclimates provide refuges from climatic extremes. Using one of the largest standardised data sets collected to date, we tested how ant species composition and functional diversity (i.e., the range and value of species traits found within assemblages) respond to large-scale abiotic factors (altitude, aspect), and fine-scale factors (vegetation, soil structure) along an elevational gradient in tropical Africa. Altitude emerged as the principal factor explaining species composition. Analysis of nestedness and turnover components of beta diversity indicated that ant assemblages are specific to each elevation, so species are not filtered out but replaced with new species as elevation increases. Similarity of assemblages over time (assessed using beta decay) did not change significantly at low and mid elevations but declined at the highest elevations. Assemblages also differed between northern and southern mountain aspects, although at highest elevations, composition was restricted to a set of species found on both aspects. Functional diversity was not explained by large scale variables like elevation, but by factors associated with elevation that operate at fine scales (i.e., temperature and habitat structure). Our findings highlight the significance of fine-scale variables in predicting organisms’ responses to changing temperature, offering management possibilities that might dilute climate change impacts, and caution when predicting assemblage responses using climate models, alone.


Sign in / Sign up

Export Citation Format

Share Document