scholarly journals Predicting the impact of future oil-spill closures on fishery-dependent communities—a spatially explicit approach

Author(s):  
Igal Berenshtein ◽  
Shay O’Farrell ◽  
Natalie Perlin ◽  
James N Sanchirico ◽  
Steven A Murawski ◽  
...  

Abstract Major oil spills immensely impact the environment and society. Coastal fishery-dependent communities are especially at risk as their fishing grounds are susceptible to closure because of seafood contamination threat. During the Deepwater Horizon (DWH) disaster for example, vast areas of the Gulf of Mexico (GoM) were closed for fishing, resulting in coastal states losing up to a half of their fishery revenues. To predict the effect of future oil spills on fishery-dependent communities in the GoM, we develop a novel framework that combines a state-of-the-art three-dimensional oil-transport model with high-resolution spatial and temporal data for two fishing fleets—bottom longline and bandit-reel—along with data on the social vulnerability of coastal communities. We demonstrate our approach by simulating spills in the eastern and western GoM, calibrated to characteristics of the DWH spill. We find that the impacts of the eastern and western spills are strongest in the Florida and Texas Gulf coast counties respectively both for the bandit-reel and the bottom longline fleets. We conclude that this multimodal spatially explicit quantitative framework is a valuable management tool for predicting the consequences of oil spills at locations throughout the Gulf, facilitating preparedness and efficient resource allocation for future oil-spill events.

2021 ◽  
Vol 925 (1) ◽  
pp. 012048
Author(s):  
Dwiyoga Nugroho ◽  
Widodo Setiyo Pranowo ◽  
Niken Financia Gusmawati ◽  
Zulkarnain Bilhaqqi Nazal ◽  
Randy Hasan Basri Rozali ◽  
...  

Abstract This study presents a coupled hydrodynamic and oil transport numerical model to study the spread of Karawang oil spills at sea due to well-kick failures. This model uses the 3D configuration of ROMS-CROCO in the Java Sea. The model has a resolution of 1 km, 25 vertical layers, and runs from January 2019 to September 2019. Temperature, salinity, sea surface height, ocean currents, and harmonic tides are derived from global models and applied to open boundaries. Hourly atmospheric datasets during model simulation are forced as flux input in the surface. The 3D profile of the flow generated by the model is converted to the GNOME oil transport model format as mover type input to disperse the oil. The hydrodynamic model shows that the result has a good agreement with in-situ data and observation with mean of correlation exceeding r>0.8 for sea surface height and sea surface temperature. Compared with radar satellites, oil spill dispersion shows the same scattered trend as satellite data. Backward modelling shows oil particles returning to the initial spill location. The oil spill was moving westward, and some are stranded on the coast between Karawang and Bekasi.


Polar Biology ◽  
2021 ◽  
Vol 44 (3) ◽  
pp. 575-586
Author(s):  
Pepijn De Vries ◽  
Jacqueline Tamis ◽  
Jasmine Nahrgang ◽  
Marianne Frantzen ◽  
Robbert Jak ◽  
...  

AbstractIn order to assess the potential impact from oil spills and decide the optimal response actions, prediction of population level effects of key resources is crucial. These assessments are usually based on acute toxicity data combined with precautionary assumptions because chronic data are often lacking. To better understand the consequences of applying precautionary approaches, two approaches for assessing population level effects on the Arctic keystone species polar cod (Boreogadus saida) were compared: a precautionary approach, where all exposed individuals die when exposed above a defined threshold concentration, and a refined (full-dose-response) approach. A matrix model was used to assess the population recovery duration of scenarios with various but constant exposure concentrations, durations and temperatures. The difference between the two approaches was largest for exposures with relatively low concentrations and short durations. Here, the recovery duration for the refined approach was less than eight times that found for the precautionary approach. Quantifying these differences helps to understand the consequences of precautionary assumptions applied to environmental risk assessment used in oil spill response decision making and it can feed into the discussion about the need for more chronic toxicity testing. An elasticity analysis of our model identified embryo and larval survival as crucial processes in the life cycle of polar cod and the impact assessment of oil spills on its population.


2016 ◽  
Vol 16 (24) ◽  
pp. 15741-15754 ◽  
Author(s):  
Martyn P. Chipperfield ◽  
Qing Liang ◽  
Matthew Rigby ◽  
Ryan Hossaini ◽  
Stephen A. Montzka ◽  
...  

Abstract. Carbon tetrachloride (CCl4) is an ozone-depleting substance, which is controlled by the Montreal Protocol and for which the atmospheric abundance is decreasing. However, the current observed rate of this decrease is known to be slower than expected based on reported CCl4 emissions and its estimated overall atmospheric lifetime. Here we use a three-dimensional (3-D) chemical transport model to investigate the impact on its predicted decay of uncertainties in the rates at which CCl4 is removed from the atmosphere by photolysis, by ocean uptake and by degradation in soils. The largest sink is atmospheric photolysis (74 % of total), but a reported 10 % uncertainty in its combined photolysis cross section and quantum yield has only a modest impact on the modelled rate of CCl4 decay. This is partly due to the limiting effect of the rate of transport of CCl4 from the main tropospheric reservoir to the stratosphere, where photolytic loss occurs. The model suggests large interannual variability in the magnitude of this stratospheric photolysis sink caused by variations in transport. The impact of uncertainty in the minor soil sink (9 % of total) is also relatively small. In contrast, the model shows that uncertainty in ocean loss (17 % of total) has the largest impact on modelled CCl4 decay due to its sizeable contribution to CCl4 loss and large lifetime uncertainty range (147 to 241 years). With an assumed CCl4 emission rate of 39 Gg year−1, the reference simulation with the best estimate of loss processes still underestimates the observed CCl4 (overestimates the decay) over the past 2 decades but to a smaller extent than previous studies. Changes to the rate of CCl4 loss processes, in line with known uncertainties, could bring the model into agreement with in situ surface and remote-sensing measurements, as could an increase in emissions to around 47 Gg year−1. Further progress in constraining the CCl4 budget is partly limited by systematic biases between observational datasets. For example, surface observations from the National Oceanic and Atmospheric Administration (NOAA) network are larger than from the Advanced Global Atmospheric Gases Experiment (AGAGE) network but have shown a steeper decreasing trend over the past 2 decades. These differences imply a difference in emissions which is significant relative to uncertainties in the magnitudes of the CCl4 sinks.


2020 ◽  
Vol 4 (2) ◽  
pp. 127
Author(s):  
Paulin Yosephin Marini ◽  
Sherlly Monica Bonsapia ◽  
Johni R.V. Korwa

<p><em>This study aims to analyze a blowout from an oil and gas leak owned by PTT Exploration and Production (PTTEP) Australasia in the Montara oil field in the Indonesian Timor Sea, and how to resolve disputes between Australia and Indonesia. A qualitative approach was used in this study, whilst the data collection technique was through library research. The theory of state responsibility, the concept of human security, and the concept of international maritime law are used to analyze disputes between Indonesia and Australia. The study found that the Montara oil spill had not only damaged the marine ecosystem but also polluted Indonesian waters. It also found that although the Australian government had formed a special commission to resolve cases and even used dispersant, it had not satisfied all parties. Several points are summarized. First, the Montara oil spill in Australia is a transnational study because the impact has crossed national borders. Secondly, UNCLOS has a weakness in the settlement of the Montara case because the Convention only provides a description related to ‘Responsibility of Each Country’ and does not specifically arrange material compensation mechanisms to countries that cause sea pollution. Third, the Montara oil spill has caused huge losses for Indonesian seaweed farmers, especially 13 districts in NTT. The recommendations are that the Indonesian government along with the Montara Victim Peoples’ Advocacy Team should continue to follow up the case of oil spills from the Montara platform and continue to fight for compensation to the Australian government and the PTTEP as the responsible party.</em></p>


2017 ◽  
Author(s):  
Daniel R. Moon ◽  
Giorgio S. Taverna ◽  
Clara Anduix-Canto ◽  
Trevor Ingham ◽  
Martyn P. Chipperfield ◽  
...  

Abstract. One geoengineering mitigation strategy for global temperature rises resulting from the increased concentrations of greenhouse gases is to inject particles into the stratosphere to scatter solar radiation back to space, with TiO2 particles emerging as a possible candidate. Uptake coefficients of HO2, γ(HO2), onto sub-micrometre TiO2 particles were measured at room temperature and different relative humidities (RH) using an atmospheric pressure aerosol flow tube coupled to a sensitive HO2 detector. Values of γ(HO2) increased from 0.021 ± 0.001 to 0.036 ± 0.007 as the RH was increased from 11 % to 66 %, and the increase in γ(HO2) correlated with the number of monolayers of water surrounding the TiO2 particles. The impact of the uptake of HO2 onto TiO2 particles on stratospheric concentrations of HO2 and O3 was simulated using the TOMCAT three-dimensional chemical transport model. The model showed that by injecting the amount of TiO2 required to achieve the same cooling effect as the Mt. Pinatubo eruption, heterogeneous reactions between HO2 and TiO2 would have a negligible effect on stratospheric concentrations of HO2 and O3.


2019 ◽  
Vol 39 (1) ◽  
pp. 119-146 ◽  
Author(s):  
Leah Drakeford ◽  
Vanessa Parks ◽  
Tim Slack ◽  
Rajeev Ramchand ◽  
Melissa Finucane ◽  
...  

1993 ◽  
Vol 1993 (1) ◽  
pp. 695-697 ◽  
Author(s):  
Thomas A. Dean ◽  
Lyman McDonald ◽  
Michael S. Stekoll ◽  
Richard R. Rosenthal

ABSTRACT This paper examines alternative designs for the monitoring and assessment of damages of environmental impacts such as oil spills. The optimal design requires sampling at pairs of impacted (oiled) and control (unoiled) sites both before and after the event. However, this design proved impractical in evaluating impacts of the Exxon Valdez oil spill on nearshore subtidal communities, and may be impractical for future monitoring. An alternative design is discussed in which sampling is conducted at pairs of control and impact sites only after the impact.


1991 ◽  
Vol 1991 (1) ◽  
pp. 677-680 ◽  
Author(s):  
D.D. Evans ◽  
G.W. Mulholland ◽  
J.R. Lawson ◽  
E.J. Tennyson ◽  
M.F. Fingas ◽  
...  

ABSTRACT The Center for Fire Research (CFR) at the National Institute of Standards and Technology (NIST) is conducting research related to safety in offshore drilling and oil spill pollution under joint funding from Minerals Management Service (MMS), U.S. Coast Guard, and the American Petroleum Institute. Technical assistance in measurement has been donated by Environment Canada. This research has focused on examining the phenomena associated with crude oil combustion and the impact of using burning as a spill response method. The process of burning crude oil on water as a means to mitigate oil spills has been investigated with a research effort combining both small-scale experiments and calculations. As a result of these studies, there has been increased understanding of the burning process, including burning rate, heat radiation, smoke emission, smoke composition, and smoke dispersion in the atmosphere. A key to gaining acceptance of burning as a spill response technique is the demonstration that favorable results obtained at laboratory scale can be shown to continue in test burns representing the size of fires expected in actual operations. Field-scale burn tests are being planned and coordinated jointly by MMS, API, USCG, and Environment Canada to document the use of burning technology under conditions simulating actual oil spill cleanup operations. The purpose of this project is to measure the effects of oil spill burning in laboratory and field tests.


2014 ◽  
Vol 2014 (1) ◽  
pp. 901-918
Author(s):  
James A. Stronach ◽  
Aurelien Hospital

ABSTRACT Oil behavior and fate have been simulated extensively by several spill models. These simulations can be greatly enhanced by the use of a coupled three-dimensional model of currents and water properties to determine oil transport and weathering, both on the water surface and in the water column. Several physical and chemical processes such as vertical dispersion in response to wave action, resurfacing when waves die down, sinking through loss of volatiles and dissolution are essential in assessing the impact of an oil spill on the environment. Dissolution is especially important, considering the known toxicity of several of the constituents of liquid hydrocarbons. For this study, a three-dimensional hydrodynamic model of coastal British Columbia was coupled to an oil trajectory and weathering model in order to simulate the complete fate and behaviour of surface, shoreline-retained, dissolved, sunken and dispersed oil. Utilization of a three-dimensional model is the key to adequately modelling the transport of a spill in an estuarine region such as in the Strait of Georgia, B.C., where the distribution of currents and water properties is strongly affected by estuarine processes: the Fraser River enters at the surface and oceanic waters from the Pacific enter as a deep inflow. Three-dimensional currents and water properties were provided by the hydrodynamic model, H3D, a semi-implicit model using a staggered Arakawa grid and variable number of layers in the vertical direction to resolve near-surface processes. Waves were simulated using the wave model SWAN. Winds were obtained from the local network of coastal light stations and wind buoys. Stochastic modelling was conducted first, using only surface currents, to determine probabilistic maps of the oil trajectory on water and statistical results were extracted, such as the amount of shoreline oiled and the amount of oil evaporated, both for the ensemble of simulations constituting the stochastic simulation, as well as for any particular individual simulation. Deterministic scenarios were then selected and the fate of the oil, such as the dissolved and sunken fractions, was tracked over a 14 day period on the three-dimensional grid. This method has been used for environmental impact assessment and spill response planning.


Sign in / Sign up

Export Citation Format

Share Document