A simple mathematical model to describe antibody-dependent enhancement in heterologous secondary infection in dengue

2018 ◽  
Vol 36 (4) ◽  
pp. 411-438 ◽  
Author(s):  
Miller Cerón Gómez ◽  
Hyun Mo Yang

Abstract We develop a mathematical model to describe the role of antibody-dependent enhancement (ADE) in heterologous secondary infections, assuming that antibodies specific to primary dengue virus (DENV) infection are being produced by immunological memory. The model has a virus-free equilibrium (VFE) and a unique virus-presence equilibrium (VPE). VFE is asymptotically stable when VPE is unstable; and unstable, otherwise. Additionally, there is an asymptotic attractor (not a fixed point) due to the fact that the model assumes unbounded increase in memory cells. In the analysis of the model, ADE must be accounted in the initial stage of infection (a window of time of few days), period of time elapsed from the heterologous infection until the immune system mounting an effective response against the secondary infection. We apply the results yielded by model to evaluate ADE phenomonon in heterologous DENV infection. We also associate the possible occurrence of severe dengue with huge viremia mediated by ADE phenomenon.

Intervirology ◽  
2020 ◽  
Vol 63 (1-6) ◽  
pp. 57-65
Author(s):  
Liming Jiang ◽  
Qiangming Sun

<b><i>Background:</i></b> Antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is identified as the main risk factor of severe dengue diseases. The underlying mechanisms leading to severe dengue fever remain unclear. <b><i>Methods:</i></b> THP-1 cells were treated with an autophagy inducer (rapamycin) or inhibitor (3-methyladenine [3-MA]) and infected with DENV and DENV-ADE. In order to investigate the expression profile of autophagy-related genes in DENV-ADE and DENV direct infection of THP-1 cells, the PCR array including 84 autophagy-related genes was selected to detect the expression of related genes, and then heat map and clustergram were established by analysis software to compare the expression differences of these genes between the DENV-ADE and DENV direct infection. <b><i>Results:</i></b> Autophagy-inducing complex related genes ATG5 and ATG12 were upregulated, and autophagosomes were also observed by transmission electron microscopy among DENV-ADE- and DENV-infected THP-1 cells, which indicated that autophagy was involved in dengue infection. The results show that 3-MA has a significant inhibitory effect on ATG12 in THP-1 cells; on the contrary, the expression of ATG12 was upreg­ulated in THP-1 cells that were treated with rapamycin. The autophagy-related genes ESR1, INS, BNIP3, FAS, TGM2, ATG9B, and DAPK1 exhibited significant differences between DENV-ADE and DENV direct infection groups. <b><i>Conclusion:</i></b> In the present study, an additional mechanism of autophagy was inhibited by the autophagy inhibitor (3-MA) in DENV- and DENV-ADE-infected THP-1 cells. Our finding provided a clear link between autophagy and antibody-enhanced infection of DENV.


2020 ◽  
Vol 21 (22) ◽  
pp. 8428
Author(s):  
Guido Santos ◽  
Julio Vera

Bacterial pneumonia is one of the most prevalent infectious diseases and has high mortality in sensitive patients (children, elderly and immunocompromised). Although an infection, the disease alters the alveolar epithelium homeostasis and hinders normal breathing, often with fatal consequences. A special case is hospitalized aged patients, which present a high risk of infection and death because of the community acquired version of the Streptococcus pneumoniae pneumonia. There is evidence that early antibiotics treatment decreases the inflammatory response during pneumonia. Here, we investigate mechanistically this strategy using a multi-level mathematical model, which describes the 24 first hours after infection of a single alveolus from the key signaling networks behind activation of the epithelium to the dynamics of the local immune response. With the model, we simulated pneumonia in aged and young patients subjected to different antibiotics timing. The results show that providing antibiotics to elderly patients 8 h in advance compared to young patients restores in aged individuals the effective response seen in young ones. This result suggests the use of early, probably prophylactic, antibiotics treatment in aged hospitalized people with high risk of pneumonia.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 88 ◽  
Author(s):  
Jisang Park ◽  
Hyun-Young Lee ◽  
Ly Tuan Khai ◽  
Nguyen Thi Thu Thuy ◽  
Le Quynh Mai ◽  
...  

Dengue virus (DENV) comprises four serotypes in the family Flaviviridae and is a causative agent of dengue-related diseases, including dengue fever. Dengue fever is generally a self-limited febrile illness. However, secondary infection of patients with a suboptimal antibody (Ab) response provokes life-threatening severe dengue hemorrhagic fever or dengue shock syndrome. To develop a potent candidate subunit vaccine against DENV infection, we developed the EDII-cEDIII antigen, which contains partial envelope domain II (EDII) including the fusion loop and BC loop epitopes together with consensus envelope domain III (cEDIII) of all four serotypes of DENV. We purified Ab from mice after immunization with EDII-cEDIII or cEDIII and compared their virus neutralization and Ab-dependent enhancement of DENV infection. Anti-EDII-cEDIII Ab showed stronger neutralizing activity and lower Ab-dependent peak enhancement of DENV infection compared with anti-cEDIII Ab. Following injection of Ab-treated DENV into AG129 mice, anti-EDII-cEDIII Ab ameliorated DENV infection in tissues with primary and secondary infection more effectively than anti-cEDIII Ab. In addition, anti-EDII-cEDIII Ab protected against DENV1, 2, and 4 challenge. We conclude that EDII-cEDIII induces neutralizing and protective Abs, and thus, shows promise as a candidate subunit vaccine for DENV infection.


Author(s):  
Sheila Cabezas-Falcon ◽  
Aidan J. Norbury ◽  
Jarrod Hulme-Jones ◽  
Sonja Klebe ◽  
Penelope Adamson ◽  
...  

The complement alternative pathway (AP) is tightly regulated and changes in two important AP components, factor B (FB) and factor H (FH) are linked to severe dengue in humans. Here, a mouse model of dengue was investigated to define the changes in FB and FH and assess the utility of this model to study the role of the AP in severe dengue. Throughout the period of viremia in the AG129 IFN signalling-deficient mouse, an increase in FB and a decrease in FH was observed following dengue virus (DENV) infection, with the former only seen in a model of more severe disease associated with antibody-dependent enhancement (ADE). Terminal disease was associated with a decrease in FB and FH, with greater changes during ADE, and accompanied by increased C3 degradation consistent with complement activation. In silico analysis of NFκΒ, signal transducer and activator of transcription (STAT) and IFN-driven FB and FH promoter elements to reflect the likely impact of the lack of IFN-responses in AG129 mice, demonstrated that these elements differed markedly between human and mouse, notably with mouse FH lacking NFκΒ and key IFN-stimulated response elements (ISRE), and FB with many more NFκΒ and STAT-responsive elements than human FB. Thus, the AG129 mouse offers utility in demonstrating changes in FB and FH that, similar to humans, are associated with severe disease, but lack predicted important human-specific and IFN-dependent responses of FB and FH to DENV-infection that are likely to regulate the subtleties of the overall AP response during dengue disease in humans.


2019 ◽  
Author(s):  
Meghan E. Breitbach ◽  
Christina M. Newman ◽  
Dawn M. Dudley ◽  
Laurel M. Stewart ◽  
Matthew T. Aliota ◽  
...  

AbstractZika virus (ZIKV) and dengue virus (DENV) are genetically and antigenically related flaviviruses that now co-circulate in much of the tropical and subtropical world. The rapid emergence of ZIKV in the Americas in 2015 and 2016, and its recent associations with Guillain-Barré syndrome, birth defects, and fetal loss have led to the hypothesis that DENV infection induces cross-reactive antibodies that influence the severity of secondary ZIKV infections. It has also been proposed that pre-existing ZIKV immunity could affect DENV pathogenesis. We examined outcomes of secondary ZIKV infections in three rhesus and fifteen cynomolgus macaques, as well as secondary DENV-2 infections in three additional rhesus macaques up to a year post-primary ZIKV infection. Although cross-binding antibodies were detected prior to secondary infection for all animals and cross-neutralizing antibodies were detected for some animals, previous DENV or ZIKV infection had no apparent effect on the clinical course of heterotypic secondary infections in these animals. All animals had asymptomatic infections and, when compared to controls, did not have significantly perturbed hematological parameters. Rhesus macaques infected with DENV-2 approximately one year after primary ZIKV infection had higher vRNA loads in plasma when compared with serum vRNA loads from ZIKV-naive animals infected with DENV-2, but a differential effect of sample type could not be ruled out. In cynomolgus macaques, the serotype of primary DENV infection did not affect the outcome of secondary ZIKV infection.Author summaryPre-existing immunity to one of the four DENV serotypes is known to increase the risk of severe disease upon secondary infection with a different serotype. Due to the antigenic similarities between ZIKV and DENV, it has been proposed that these viruses could interact in a similar fashion. Data from in vitro experiments and murine models suggests that pre-existing immunity to one virus could either enhance or protect against infection with the other. These somewhat contradictory findings highlight the need for immune competent animal models for understanding the role of cross-reactive antibodies in flavivirus pathogenesis. We examined secondary ZIKV or DENV infections in rhesus and cynomolgus macaques that had previously been infected with the other virus. We assessed the outcomes of secondary ZIKV or DENV infections by quantifying vRNA loads, clinical and laboratory parameters, body temperature, and weight for each cohort of animals and compared them with control animals. These comparisons demonstrated that within a year of primary infection, secondary infections with either ZIKV or DENV were similar to primary infections and were not associated with enhancement or reduction in severity of disease based on the outcomes that we assessed.


2016 ◽  
Vol 144 (13) ◽  
pp. 2874-2882 ◽  
Author(s):  
M. Z. NDII ◽  
D. ALLINGHAM ◽  
R. I. HICKSON ◽  
K. GLASS

SUMMARYAn innovative strategy to reduce dengue transmission uses the bacterium Wolbachia. We analysed the effects of Wolbachia on dengue transmission dynamics in the presence of two serotypes of dengue using a mathematical model, allowing for differences in the epidemiological characteristics of the serotypes. We found that Wolbachia has a greater effect on secondary infections than on primary infections across a range of epidemiological characteristics. If one serotype is more transmissible than the other, it will dominate primary infections and Wolbachia will be less effective at reducing secondary infections of either serotype. Differences in the antibody-dependent enhancement of the two serotypes have considerably less effect on the benefits of Wolbachia than differences in transmission probability. Even if the antibody-dependent enhancement rate is high, Wolbachia is still effective in reducing dengue. Our findings suggest that Wolbachia will be effective in the presence of more than one serotype of dengue; however, a better understanding of serotype-specific differences in transmission probability may be needed to optimize delivery of a Wolbachia intervention.


Author(s):  
Ralph Huits ◽  
Eli Schwartz

Abstract Background The case-fatality rate of dengue in travelers is low. Secondary dengue virus (DENV) infections are considered a risk factor for fatal outcome in endemic populations; however, the impact of secondary infections on mortality in travelers has not been studied systematically. We performed a descriptive analysis of case reports of dengue fatalities in travelers. Methods We searched Medline for clinical case reports, using the free terms and MeSH headings: ‘Dengue’ OR ‘Severe Dengue’ AND ‘Travel-Related Illness’ OR ‘travel’ AND ‘Mortality’ OR ‘Fatal Outcome’. We analyzed case reports of fatal dengue in returning travelers published from 1995 to 2020, with the objective to detail risk factors for dengue mortality in this population. We verified the authors’ classifications of primary or secondary dengue infections; infections were considered as primary by absence of anti-DENV immunoglobulin (Ig)G or by IgM-to-IgG ratios greater than or equal to 1.8 in the first 7 days post symptom onset. Results We identified nine detailed reports of dengue with fatal outcome among travelers from non-endemic countries. Eight fatalities were female. The median age was 32 years (range 21–63). Out of nine fatal cases, seven travelers had a primary DENV infection, one had a secondary infection and, in one, these data were not reported. The infecting DENV serotypes were DENV-1 (n = 2), DENV-2 (n = 2) and DENV-3 (n = 3); DENV-1 or 2 (n = 1) and in one case, the serotype could not be determined. Conclusions Dengue-related deaths in travelers are rare. Most dengue cases in travelers are primary infections. Contrary to prevailing conceptions, we found that fatal outcomes of dengue in travelers from non-endemic countries were reported mainly with primary DENV infections. We alert health care providers that primary DENV infections are not always harmless and that in adult travelers from non-endemic countries, primary infections may contribute more to dengue-related mortality than secondary infections.


2016 ◽  
Vol 113 (3) ◽  
pp. 728-733 ◽  
Author(s):  
Leah C. Katzelnick ◽  
Magelda Montoya ◽  
Lionel Gresh ◽  
Angel Balmaseda ◽  
Eva Harris

The four dengue virus serotypes (DENV1–4) are mosquito-borne flaviviruses that infect ∼390 million people annually; up to 100 million infections are symptomatic, and 500,000 cases progress to severe disease. Exposure to a heterologous DENV serotype, the specific infecting DENV strains, and the interval of time between infections, as well as age, ethnicity, genetic polymorphisms, and comorbidities of the host, are all risk factors for severe dengue. In contrast, neutralizing antibodies (NAbs) are thought to provide long-lived protection against symptomatic infection and severe dengue. The objective of dengue vaccines is to provide balanced protection against all DENV serotypes simultaneously. However, the association between homotypic and heterotypic NAb titers and protection against symptomatic infection remains poorly understood. Here, we demonstrate that the titer of preinfection cross-reactive NAbs correlates with reduced likelihood of symptomatic secondary infection in a longitudinal pediatric dengue cohort in Nicaragua. The protective effect of NAb titers on infection outcome remained significant when controlled for age, number of years between infections, and epidemic force, as well as with relaxed or more stringent criteria for defining inapparent DENV infections. Further, individuals with higher NAb titers immediately after primary infection had delayed symptomatic infections compared with those with lower titers. However, overall NAb titers increased modestly in magnitude and remained serotype cross-reactive in the years between infections, possibly due to reexposure. These findings establish that anti-DENV NAb titers correlate with reduced probability of symptomatic DENV infection and provide insights into longitudinal characteristics of antibody-mediated immunity to DENV in an endemic setting.


2015 ◽  
Vol 113 (05) ◽  
pp. 1060-1070 ◽  
Author(s):  
Chia-Ming Chang ◽  
Cheng-Yeu Wu ◽  
Ming-Shen Dai ◽  
Hao Chan ◽  
Wen-Sheng Wu ◽  
...  

SummaryDengue haemorrhagic fever (DHF) typically occurs during secondary infections with dengue viruses (DENVs). Although it is generally accepted that antibody-dependent enhancement is the primary reason why patients with secondary infection are at an increased risk of developing DHF, a growing body of evidence shows that other mechanisms, such as the elicitation of antiplatelet autoantibodies by DENV nonstructural protein NS1, also play crucial roles in the pathogenesis of DHF. In this study, we developed a “two-hit” model of secondary DENV infection to examine the respective roles of DENV (first hit) and antiplatelet Igs (second hit) on the induction of haemorrhage. Mice were first exposed to DENV and then exposed to antiplatelet or anti-NS1 Igs 24 hours later. The two-hit treatment induced substantial haemorrhage, coagulopathy, and cytokine surge, and additional treatment with antagonists of TNF-α, IL-1, caspase-1, and FcүRIII ameliorated such effects. In addition, knockout mice lacking the Fcү receptor III, Toll-like receptor 3, and inflammasome components Nlrp3 and caspase-1 exhibited considerably fewer pathological alterations than did wild type controls. These findings may provide new perspectives for developing feasible approaches to treat patients with DHF.


Sign in / Sign up

Export Citation Format

Share Document