scholarly journals Maternal Epstein-Barr Virus-Specific Antibodies and Risk of Infection in Ugandan Infants

Author(s):  
Rana Minab ◽  
Wei Bu ◽  
Hanh Nguyen ◽  
Abigail Wall ◽  
Anton M Sholukh ◽  
...  

Abstract Background Epstein-Barr virus (EBV) infection is a major cause of malignancy worldwide. Maternal antibody is thought to prevent EBV infection because it is uncommon in early infancy. Maternal HIV infection is associated with an increased incidence of EBV infection in exposed infants, which we hypothesized results from impaired transfer of EBV-neutralizing maternal antibodies. Methods Among Ugandan infants followed for EBV acquisition from birth, we measured antibody binding to EBV glycoproteins (gp350, gH/gL) involved in B-cell and epithelial-cell entry, as well as viral neutralization and antibody-dependent cellular cytotoxicity (ADCC) activity in plasma samples prior to infection. These serologic data were analyzed for differences between HIV-exposed uninfected (HEU) and HIV-unexposed (HUU) infants, and for associations with incident infant EBV infection. Results HEU infants had significantly higher titers than HUU infants for all EBV-binding and neutralizing antibodies measured (P < .01) but not ADCC activity, which was similar between groups. No antibody measure was associated with a decreased risk of EBV acquisition in the cohort. Conclusions Our findings indicate that in this cohort maternal antibody did not protect infants against EBV infection through viral neutralization. The identification of protective nonneutralizing antibody functions would be invaluable for the development of an EBV vaccine.

2016 ◽  
Vol 91 (1) ◽  
Author(s):  
Eric R. Weiss ◽  
Galit Alter ◽  
Javier Gordon Ogembo ◽  
Jennifer L. Henderson ◽  
Barbara Tabak ◽  
...  

ABSTRACT The Epstein-Barr virus (EBV) gp350 glycoprotein interacts with the cellular receptor to mediate viral entry and is thought to be the major target for neutralizing antibodies. To better understand the role of EBV-specific antibodies in the control of viral replication and the evolution of sequence diversity, we measured EBV gp350-specific antibody responses and sequenced the gp350 gene in samples obtained from individuals experiencing primary EBV infection (acute infectious mononucleosis [AIM]) and again 6 months later (during convalescence [CONV]). EBV gp350-specific IgG was detected in the sera of 17 (71%) of 24 individuals at the time of AIM and all 24 (100%) individuals during CONV; binding antibody titers increased from AIM through CONV, reaching levels equivalent to those in age-matched, chronically infected individuals. Antibody-dependent cell-mediated phagocytosis (ADCP) was rarely detected during AIM (4 of 24 individuals; 17%) but was commonly detected during CONV (19 of 24 individuals; 79%). The majority (83%) of samples taken during AIM neutralized infection of primary B cells; all samples obtained at 6 months postdiagnosis neutralized EBV infection of cultured and primary target cells. Deep sequencing revealed interpatient gp350 sequence variation but conservation of the CR2-binding site. The levels of gp350-specific neutralizing activity directly correlated with higher peripheral blood EBV DNA levels during AIM and a greater evolution of diversity in gp350 nucleotide sequences from AIM to CONV. In summary, we conclude that the viral load and EBV gp350 diversity during early infection are associated with the development of neutralizing antibody responses following AIM. IMPORTANCE Antibodies against viral surface proteins can blunt the spread of viral infection by coating viral particles, mediating uptake by immune cells, or blocking interaction with host cell receptors, making them a desirable component of a sterilizing vaccine. The EBV surface protein gp350 is a major target for antibodies. We report the detection of EBV gp350-specific antibodies capable of neutralizing EBV infection in vitro. The majority of gp350-directed vaccines focus on glycoproteins from lab-adapted strains, which may poorly reflect primary viral envelope diversity. We report some of the first primary gp350 sequences, noting that the gp350 host receptor binding site is remarkably stable across patients and time. However, changes in overall gene diversity were detectable during infection. Patients with higher peripheral blood viral loads in primary infection and greater changes in viral diversity generated more efficient antibodies. Our findings provide insight into the generation of functional antibodies, necessary for vaccine development.


2016 ◽  
Vol 23 (4) ◽  
pp. 363-369 ◽  
Author(s):  
Wei Bu ◽  
Gregory M. Hayes ◽  
Hui Liu ◽  
Lorraine Gemmell ◽  
David O. Schmeling ◽  
...  

ABSTRACTProspective studies of antibodies to multiple Epstein-Barr virus (EBV) proteins and EBV neutralizing antibodies in the same individuals before, during, and after primary EBV infection have not been reported. We studied antibody responses to EBV in college students who acquired primary EBV infection during prospective surveillance and correlated the kinetics of antibody response with the severity of disease. Neutralizing antibodies and enzyme-linked immunosorbent assay (ELISA) antibodies to gp350, the major target of neutralizing antibody, reached peak levels at medians of 179 and 333 days after the onset of symptoms of infectious mononucleosis, respectively. No clear correlation was found between the severity of the symptoms of infectious mononucleosis and the peak levels of antibody to individual viral proteins or to neutralizing antibody. In summary, we found that titers of neutralizing antibody and antibodies to multiple EBV proteins increase over many months after primary infection with EBV.


2018 ◽  
Author(s):  
Lorraine Z Mutsvunguma ◽  
Anne Barasa ◽  
Charles Warden ◽  
Joslyn Foley ◽  
Murali Muniraju ◽  
...  

AbstractPrevention of Epstein-Barr virus (EBV) primary infection has focused on generating neutralizing antibodies (nAbs) targeting the major envelope glycoprotein gp350/220 (gp350). To date, eight gp350 epitopes have been identified, but only one has elicited nAbs. In this study, we generated 23 hybridomas that produced anti-gp350 antibodies. We compared the candidate anti-gp350 antibodies to nAb-72A1 by: (1) testing their ability to detect gp350 using ELISA, flow cytometry, and immunoblot; (2) sequencing their heavy and light chain complementarity-determining regions (CDRs); (3) measuring the ability of each monoclonal antibody (mAb) to neutralize EBV infectionin vitro; and (4) mapping the gp350 amino acids bound by the mAbs using RepliTope peptide microarrays. Eight antibodies recognized both denatured and non-denatured gp350, whereas five failed to react with denatured gp350 but recognized native gp350, suggesting they recognized conformational epitope(s). Sequence analysis of the heavy and light chain variable regions of the hybridomas identified 15 as mAbs with novel CDR regions unique from those of nAb-72A1. Seven of the new mAbs neutralized EBVin vitro, with HB20 and HB17 reducing EBV infection by 40% and >60%, and >30% and 80%, at 10 μg/ml and 50 μg/ml, respectively. Epitope mapping identified nine epitopes and defined their core residues, including two unique immunodominant epitopes,253TPIPGTGYAYSLRLTPRPVSRFL253and875LLLLVMADCAFRRNLSTSHTYTTPPY899, and a novel nAb epitope381GAFASNRTFDIT392. This study provides comprehensivein vitromapping of the exact residues defining nine epitopes of EBV gp350. Our findings will inform novel strategies to design optimal EBV vaccines capable of conferring broader protection against the virus.ImportanceNeutralizing antibodies (nAbs) directed against Epstein-Barr virus envelope glycoprotein gp350/220 (gp350) are generated in humans upon infection or immunization, and are thought to prevent neonatal infection. However, clinical use of exogenous nAbs (passive immunization) is limited to a single study using the only well-characterized nAb, 72A1. The gp350 ectodomain contains at least eight unique B-cell binding epitopes; two of these epitopes are recognized by nAb-72A1. The exact amino acid residues of the other six epitopes and their role in generating nAbs has not been elucidated. We used our 15 newly generated and fully characterized monoclonal antibodies and a peptide-overlapping RepliTope array to provide a comprehensive map of the core amino acid residues that define epitopes of gp350 and to understand their role in generating nAbs. These results will inform design of better-targeted gp350 peptide vaccines that contain only protective epitopes, which will focus the B-cell response to produce predominantly nAbs.


Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 285
Author(s):  
Xinle Cui ◽  
Zhouhong Cao ◽  
Yuriko Ishikawa ◽  
Sara Cui ◽  
Ken-Ichi Imadome ◽  
...  

Epstein–Barr virus (EBV) is the primary cause of infectious mononucleosis and is strongly implicated in the etiology of multiple lymphoid and epithelial cancers. EBV core fusion machinery envelope proteins gH/gL and gB coordinately mediate EBV fusion and entry into its target cells, B lymphocytes and epithelial cells, suggesting these proteins could induce antibodies that prevent EBV infection. We previously reported that the immunization of rabbits with recombinant EBV gH/gL or trimeric gB each induced markedly higher serum EBV-neutralizing titers for B lymphocytes than that of the leading EBV vaccine candidate gp350. In this study, we demonstrated that immunization of rabbits with EBV core fusion machinery proteins induced high titer EBV neutralizing antibodies for both B lymphocytes and epithelial cells, and EBV gH/gL in combination with EBV trimeric gB elicited strong synergistic EBV neutralizing activities. Furthermore, the immune sera from rabbits immunized with EBV gH/gL or trimeric gB demonstrated strong passive immune protection of humanized mice from lethal dose EBV challenge, partially or completely prevented death respectively, and markedly decreased the EBV load in peripheral blood of humanized mice. These data strongly suggest the combination of EBV core fusion machinery envelope proteins gH/gL and trimeric gB is a promising EBV prophylactic vaccine.


2021 ◽  
pp. 134-140
Author(s):  
Luca Ena ◽  
Vittorio Mazzarello ◽  
Marco Ferrari ◽  
Pasquale Ena

Erythema annulare centrifugum (EAC) is a rare erythema characterized by erythematous and urticarial papules or annular plaques that enlarges centrifugally. The lesions usually involve the thighs and the legs. Several disorders are occasionally associated with EAC, infections, including mycoses, bacteria, or viruses and drugs have also been regarded as possible causes of this eruption. We present a 42-year-old dark-skinned woman affected by recurrent EAC that appeared secondary to influenza type A (H1N1). Histopathology showed a superficial form of EAC. In our case, a previous cytomegalovirus and Epstein-Barr virus (EBV) infection were identified and no underlying other diseases were found. Clarithromycin with calcipotriol betamethasone treatment was temporarily efficacious. In the last 3 years, the lesions started to appear every 2 weeks and tended to regress with local treatment after a variable period. We believe that the latent cytomegalovirus and the reactivity induced by EBV combined with influenza can determine, in our case, a cell mediate cutaneous immune response, which leads to the peculiar inflammatory disease known as EAC.


AIDS ◽  
2017 ◽  
pp. 1 ◽  
Author(s):  
Kristin Beima-Sofie ◽  
Dalton Wamalwa ◽  
Elizabeth Maleche-Obimbo ◽  
Jairam R. Lingappa ◽  
Romel Mackelprang ◽  
...  

mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Lisa Grossman ◽  
Chris Chang ◽  
Joanne Dai ◽  
Pavel A. Nikitin ◽  
Dereje D. Jima ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out. Epstein-Barr virus (EBV), an oncogenic herpesvirus, infects and transforms primary B cells into immortal lymphoblastoid cell lines (LCLs), providing a model for EBV-mediated tumorigenesis. EBV transformation stimulates robust homotypic aggregation, indicating that EBV induces molecules that mediate cell-cell adhesion. We report that EBV potently induced expression of the adhesion molecule CD226, which is not normally expressed on B cells. We found that early after infection of primary B cells, EBV promoted an increase in CD226 mRNA and protein expression. CD226 levels increased further from early proliferating EBV-positive B cells to LCLs. We found that CD226 expression on B cells was independent of B-cell activation as CpG DNA failed to induce CD226 to the extent of EBV infection. CD226 expression was high in EBV-infected B cells expressing the latency III growth program, but low in EBV-negative and EBV latency I-infected B-lymphoma cell lines. We validated this correlation by demonstrating that the latency III characteristic EBV NF-κB activator, latent membrane protein 1 (LMP1), was sufficient for CD226 upregulation and that CD226 was more highly expressed in lymphomas with increased NF-κB activity. Finally, we found that CD226 was not important for LCL steady-state growth, survival in response to apoptotic stress, homotypic aggregation, or adhesion to activated endothelial cells. These findings collectively suggest that EBV induces expression of a cell adhesion molecule on primary B cells that may play a role in the tumor microenvironment of EBV-associated B-cell malignancies or facilitate adhesion in the establishment of latency in vivo. IMPORTANCE Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out.


2004 ◽  
Vol 78 (4) ◽  
pp. 1665-1674 ◽  
Author(s):  
Takashi Nakayama ◽  
Kunio Hieshima ◽  
Daisuke Nagakubo ◽  
Emiko Sato ◽  
Masahiro Nakayama ◽  
...  

ABSTRACT Chemokines are likely to play important roles in the pathophysiology of diseases associated with Epstein-Barr virus (EBV). Here, we have analyzed the repertoire of chemokines expressed by EBV-infected B cells. EBV infection of B cells induced expression of TARC/CCL17 and MDC/CCL22, which are known to attract Th2 cells and regulatory T cells via CCR4, and also upregulated constitutive expression of MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5, which are known to attract Th1 cells and cytotoxic T cells via CCR5. Accordingly, EBV-immortalized B cells secreted these chemokines, especially CCL3, CCL4, and CCL22, in large quantities. EBV infection or stable expression of LMP1 also induced CCL17 and CCL22 in a B-cell line, BJAB. The inhibitors of the TRAF/NF-κB pathway (BAY11-7082) and the p38/ATF2 pathway (SB202190) selectively suppressed the expression of CCL17 and CCL22 in EBV-immortalized B cells and BJAB-LMP1. Consistently, transient-transfection assays using CCL22 promoter-reporter constructs demonstrated that two NF-κB sites and a single AP-1 site were involved in the activation of the CCL22 promoter by LMP1. Finally, serum CCL22 levels were significantly elevated in infectious mononucleosis. Collectively, LMP1 induces CCL17 and CCL22 in EBV-infected B cells via activation of NF-κB and probably ATF2. Production of CCL17 and CCL22, which attract Th2 and regulatory T cells, may help EBV-infected B cells evade immune surveillance by Th1 cells. However, the concomitant production of CCL3, CCL4, and CCL5 by EBV-infected B cells may eventually attract Th1 cells and cytotoxic T cells, leading to elimination of EBV-infected B cells at latency III and to selection of those with limited expression of latent genes.


Sign in / Sign up

Export Citation Format

Share Document