scholarly journals IS26-mediated amplification of blaOXA-1 and blaCTX-M-15 with concurrent outer membrane porin disruption associated with de novo carbapenem resistance in a recurrent bacteraemia cohort

Author(s):  
William C Shropshire ◽  
Samuel L Aitken ◽  
Reed Pifer ◽  
Jiwoong Kim ◽  
Micah M Bhatti ◽  
...  

Abstract Background Approximately half of clinical carbapenem-resistant Enterobacterales (CRE) isolates lack carbapenem-hydrolysing enzymes and develop carbapenem resistance through alternative mechanisms. Objectives To elucidate development of carbapenem resistance mechanisms from clonal, recurrent ESBL-positive Enterobacterales (ESBL-E) bacteraemia isolates in a vulnerable patient population. Methods This study investigated a cohort of ESBL-E bacteraemia cases in Houston, TX, USA. Oxford Nanopore Technologies long-read and Illumina short-read sequencing data were used for comparative genomic analysis. Serial passaging experiments were performed on a set of clinical ST131 Escherichia coli isolates to recapitulate in vivo observations. Quantitative PCR (qPCR) and qRT–PCR were used to determine copy number and transcript levels of β-lactamase genes, respectively. Results Non-carbapenemase-producing CRE (non-CP-CRE) clinical isolates emerged from an ESBL-E background through a concurrence of primarily IS26-mediated amplifications of blaOXA-1 and blaCTX-M-1 group genes coupled with porin inactivation. The discrete, modular translocatable units (TUs) that carried and amplified β-lactamase genes mobilized intracellularly from a chromosomal, IS26-bound transposon and inserted within porin genes, thereby increasing β-lactamase gene copy number and inactivating porins concurrently. The carbapenem resistance phenotype and TU-mediated β-lactamase gene amplification were recapitulated by passaging a clinical ESBL-E isolate in the presence of ertapenem. Clinical non-CP-CRE isolates had stable carbapenem resistance phenotypes in the absence of ertapenem exposure. Conclusions These data demonstrate IS26-mediated mechanisms underlying β-lactamase gene amplification with concurrent outer membrane porin disruption driving emergence of clinical non-CP-CRE. Furthermore, these amplifications were stable in the absence of antimicrobial pressure. Long-read sequencing can be utilized to identify unique mobile genetic element mechanisms that drive antimicrobial resistance.

2019 ◽  
Author(s):  
William C. Shropshire ◽  
Samuel L. Aitken ◽  
Reed Pifer ◽  
Jiwoong Kim ◽  
Micah M. Bhatti ◽  
...  

ABSTRACTBackgroundCarbapenem resistant Enterobacterales (CRE) remain urgent antimicrobial resistance threats. Approximately half of CRE clinical isolates lack carbapenem hydrolyzing enzymes and develop carbapenem resistance through alternative mechanisms. The purpose of this study was to elucidate the development of carbapenem resistance mechanisms from clonal, recurrent extended-spectrum β-lactamase positive Enterobacterales (ESBL-E) bacteremia isolates in a vulnerable patient population.MethodsThis study investigated a historical, retrospective cohort of ESBL-E bacteremia cases in the University of Texas MD Anderson Cancer Center (MDACC) from January 2015 to July 2016. Phylogenetic and comparative genomic analyses were performed to identify clonal, recurrent ESBL-E isolates developing carbapenem resistance. Oxford Nanopore Technology (ONT) long-read and Illumina short-read sequencing data were used to generate consensus assemblies and to identify signatures of mobile genetic element mediated amplification and transposition of antimicrobial resistance genes. Serial passaging experiments were performed on a set of clinical ST131 ESBL-E isolates to recapitulate in vivo observations. qPCR and qRT-PCR were used to determine respective copy number and transcript levels of β-lactamase genes.Results116 ESBL-E bacteremia cases were identified, 16 of which had documented recurrent infections. Four serial, recurrent isolates displayed a carbapenem resistant phenotype, three without the acquisition of a known carbapenemase. These three isolates had non-carbapenemase-producing CRE (non-CP-CRE) mechanisms driven by IS26- and ISEcp1-mediated amplification of respective translocatable units (TU) and transposition units (TPU) harboring both blaOXA-1 and blaCTX-M variants with concomitant outer membrane porin disruption. The TU and TPU structures inserted into the open reading frames of outer membrane porin genes in a subset of non-CP-CRE isolates. Serial passage of an index ST131 ESBL-E isolate under selective carbapenem exposure resulted in chromosomal amplification of modular, TUs harboring β-lactamase genes with concomitant porin inactivation, recapitulating the in vivo carbapenem resistance progression. Long-read sequencing of two additional MDACC bacteremia strains identified similar non-CP-CRE mechanisms observed in the serial isolates.ConclusionsNon-CP-CRE de novo mechanisms were the primary driver of CRE development in recurrent bacteremia cases within this vulnerable patient population. The incorporation of long-read ONT data into AMR surveillance platforms is critical to identify high-risk CRE isolates that are difficult to identify with low-resolution phenotypic and molecular characterization methods.


2022 ◽  
Vol 12 ◽  
Author(s):  
Lang Yang ◽  
Hong He ◽  
Qichao Chen ◽  
Kaiying Wang ◽  
Yanfeng Lin ◽  
...  

NDM-1-producing multidrug-resistant Proteus mirabilis brings formidable clinical challenges. We report a nosocomial outbreak of carbapenem-resistant P. mirabilis in China. Six P. mirabilis strains collected in the same ward showed close phylogenetic relatedness, indicating clonal expansion. Illumina and MinION sequencing revealed that three isolates harbored a novel Salmonella genomic island 1 carrying a blaNDM–1 gene (SGI1-1NDM), while three other isolates showed elevated carbapenem resistance and carried a similar SGI1 but with two blaNDM–1 gene copies (SGI1-2NDM). Four new single nucleotide mutations were present in the genomes of the two-blaNDM–1-harboring isolates, indicating later emergence of the SGI1-2NDM structure. Passage experiments indicated that both SGI variants were stably persistent in this clone without blaNDM–1 copy number changes. This study characterizes two novel blaNDM–1-harboring SGI1 variants in P. mirabilis and provides a new insight into resistance gene copy number variation in bacteria.


2018 ◽  
Vol 115 (20) ◽  
pp. 5247-5252 ◽  
Author(s):  
Qihui Zhu ◽  
Frances A. High ◽  
Chengsheng Zhang ◽  
Eliza Cerveira ◽  
Meaghan K. Russell ◽  
...  

Congenital diaphragmatic hernia (CDH), characterized by malformation of the diaphragm and hypoplasia of the lungs, is one of the most common and severe birth defects, and is associated with high morbidity and mortality rates. There is growing evidence demonstrating that genetic factors contribute to CDH, although the pathogenesis remains largely elusive. Single-nucleotide polymorphisms have been studied in recent whole-exome sequencing efforts, but larger copy number variants (CNVs) have not yet been studied on a large scale in a case control study. To capture CNVs within CDH candidate regions, we developed and tested a targeted array comparative genomic hybridization platform to identify CNVs within 140 regions in 196 patients and 987 healthy controls, and identified six significant CNVs that were either unique to patients or enriched in patients compared with controls. These CDH-associated CNVs reveal high-priority candidate genes including HLX, LHX1, and HNF1B. We also discuss CNVs that are present in only one patient in the cohort but have additional evidence of pathogenicity, including extremely rare large and/or de novo CNVs. The candidate genes within these predicted disease-causing CNVs form functional networks with other known CDH genes and play putative roles in DNA binding/transcription regulation and embryonic development. These data substantiate the importance of CNVs in the etiology of CDH, identify CDH candidate genes and pathways, and highlight the importance of ongoing analysis of CNVs in the study of CDH and other structural birth defects.


Author(s):  
Nisha S Ramani ◽  
Ajaykumar C Morani ◽  
Shengle Zhang

Abstract Objectives Aberrant expression of the mesenchymal epithelial transition factor (MET) gene has been observed in several malignancies, and drugs targeting the MET gene have been implicated in clinical trials with promising results. Hence, MET is a potentially targetable oncogenic driver. We explored the frequency of MET gene high copy number in melanomas and carcinomas. Methods The study group included 135 patients. Tissue microarrays were constructed with 19 melanomas and 116 carcinomas diagnosed from 2010 to 2012. We screened MET gene copy number by fluorescence in situ hybridization analysis using probes for MET gene and CEP7 as control. Results We found MET gene amplification in 2 (11%) of 19 melanoma cases, whereas 5 (26%) of 19 melanoma cases showed polysomy. For carcinomas, there was no MET gene amplification identified. However, 8 (7%) of 116 cases showed polysomy. Conclusions In our study, MET gene amplification was identified in 11% of melanomas and is relatively concordant with few reported studies. However, about 26% of the additional melanoma cases showed MET gene polysomy, which has not been reported as per our knowledge. If these results are validated with further orthogonal studies, more of the melanoma cases could potentially benefit from targeted therapy with MET tyrosine kinase inhibitors.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Marco Coppi ◽  
Vincenzo Di Pilato ◽  
Francesco Monaco ◽  
Tommaso Giani ◽  
Pier Giulio Conaldi ◽  
...  

ABSTRACT This study reports on the characterization of two ceftazidime-avibactam (CZA)-resistant KPC-producing Klebsiella pneumoniae strains (KP-14159 and KP-8788) sequentially isolated from infections occurred in a patient never treated with CZA. Whole-genome sequencing characterization using a combined short- and long-read sequencing approach showed that both isolates belonged to the same ST258 strain, had altered outer membrane porins (a truncated OmpK35 and an Asp137Thr138 duplication in the L3 loop of OmpK36), and carried novel pKpQIL plasmid derivatives (pIT-14159 and pIT-8788, respectively) harboring two copies of the Tn4401a KPC-3-encoding transposon. Plasmid pIT-8788 was a cointegrate of pIT-14159 with a ColE replicon (that was also present in KP-14159) apparently evolved in vivo during infection. pIT-8788 was maintained at a higher copy number than pIT-14159 and, upon transfer to Escherichia coli DH10B, was able to increase the CZA MIC by 32-fold. The present findings provide novel insights about the mechanisms of acquired resistance to CZA, underscoring the role that the evolution of broadly disseminated pKpQIL plasmid derivatives may have in increasing the blaKPC gene copy number and KPC-3 expression in bacterial hosts. Although not self-transferable, similar elements, with multiple copies of Tn4401 and maintained at a high copy number, could mediate transferable CZA resistance upon mobilization.


1984 ◽  
Vol 2 (1) ◽  
pp. 16-20 ◽  
Author(s):  
M D Carman ◽  
J H Schornagel ◽  
R S Rivest ◽  
S Srimatkandada ◽  
C S Portlock ◽  
...  

A patient is described with acute myelocytic leukemia refractory to conventional therapy, who also became highly resistant to methotrexate (MTX) after repeated courses of this drug. Leukemia cells from this patient were found to contain an elevated level of dihydrofolate reductase (DHFR) activity, with no change in the affinity of the enzyme for MTX. A sensitive "dot blot" assay revealed a fourfold increase in the gene copy number of DHFR. Southern blot analysis with a human DHFR cDNA probe confirmed this increase in the gene copy number, and demonstrated a similar restriction pattern with Eco R1, Hind III, and Pst 1 as seen with a highly amplified human leukemia cell line, K562. Additional DHFR fragments were detected, not seen in the K562 blot, suggesting the presence of pseudogenes, or a result of gene rearrangements occurring as part of the amplification process. Resistance to MTX in this patient was therefore ascribed to gene amplification and overproduction of DHFR.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2771-2771
Author(s):  
Dennis J. Kuo ◽  
Norman J. Lacayo ◽  
Don Hoang ◽  
Dejan Juric ◽  
Susana C. Raimondi ◽  
...  

Abstract Acute myeloid leukemia (AML) is a heterogeneous disease. Risk factors such as karyotype, FAB subtype, FLT3 status and response to induction therapy are determinants of outcome with current therapies. We hypothesize that array comparative genomic hybridization (CGH) will identify gene copy number changes that are determinants of outcome. Array CGH was performed on diagnostic bone marrow samples from patients on the COG study POG #9421. In order to determine regions of altered gene copy number, labeled genomic DNA samples were hybridized together with sex-matching normal human reference DNA to cDNA microarrays with 41,751 features (corresponding to 24,473 unique Unigene cluster IDs), arrays were obtained from the Stanford University Microarray Core Facility. Control hybridizations were performed to assess intra- and inter-experimental variability. We studied 70 samples with adequate high-quality DNA. Circular binary segmentation was used to distinguish discrete gene copy number transition points from chance noise events and to transform primary clone-by-clone data into genomic regions of equal copy number. Using gain/loss threshold, based on two-standard deviation range of control self-to-self distribution, novel gene amplifications and deletions were found in profiled samples. The highest alteration recurrence was observed for gains of chromosome 8 (21%) and losses of chromosome 6 (29%). The area of chromosome 8 which was found to be gained is notable for the presence of potential oncogenes such as ERK8. The deleted area of chromosome 6 is notable for the presence of potential regulators of oncogenesis: MDC1, DDR1, NFKBIL1, TNF, and BRD2. In summary, array CGH has identified novel areas of gene copy number gain and loss in this population of pediatric de novo AML patients. Further studies are needed to assess whether these genes are associated with outcome, known risk factors and whether they will provide insight into the heterogeneity of de novo AML.


Sign in / Sign up

Export Citation Format

Share Document