Cefiderocol: a novel siderophore cephalosporin for multidrug-resistant Gram-negative bacterial infections

Author(s):  
Katie A Parsels ◽  
Keri A Mastro ◽  
Jeffrey M Steele ◽  
Stephen J Thomas ◽  
Wesley D Kufel

Abstract Cefiderocol is a novel siderophore cephalosporin that forms a complex with extracellular free ferric iron, which leads to transportation across the outer cell membrane to exert its bactericidal activity through cell wall synthesis inhibition. This pharmacological property has rendered cefiderocol active against several clinically relevant MDR Gram-negative bacteria as evidenced by several in vitro and in vivo studies. Cefiderocol was first approved by the US FDA on 14 November 2019 for the treatment of complicated urinary tract infections. On 28 September 2020, cefiderocol was approved for the treatment of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. The FDA-approved indications are based on clinical data from the APEKS-cUTI, APEKS-NP and CREDIBLE-CR trials. In APEKS-cUTI, cefiderocol demonstrated non-inferiority to imipenem/cilastatin for the treatment of complicated urinary tract infection caused by MDR Gram-negative bacteria. In APEKS-NP, cefiderocol demonstrated non-inferiority to meropenem for treatment of nosocomial pneumonia. However, in CREDIBLE-CR, higher all-cause mortality was observed with cefiderocol compared with best available therapy for the treatment of severe infections caused by Gram-negative bacteria, primarily in the subset of patients with Acinetobacter spp. infections. Several case reports/series have demonstrated clinical success with cefiderocol for a variety of severe infections. The purpose of this article is to review available data on the mechanism of action, in vitro and in vivo data, pharmacokinetics, pharmacodynamics, susceptibility testing, efficacy and safety of cefiderocol to address its role in therapy.

2016 ◽  
Vol 6 (1) ◽  
pp. 15-22
Author(s):  
Zergoug Amina ◽  
Cheriguene Abderrahim ◽  
Chougrani Fadela

Urinary tract infections (UTI) are a serious bacterial pathological challenges all over the world, leading to respiratory infections, that’s why new strategies don’t cease to develop. Lactic acid bacteria having shown beneficial effects for years in various areas, may prove to be excellent candidates in medical field. The current research focused on the selection of lactic acid bacteria having the potential of an antibacterial activity against Gram negative bacteria responsible for UTI, for an eventual use as a therapeutic agent. A total of 40 isolates were isolated from goat’s raw milk of Mostaganem (West Algeria). In vitro tests were conducted in order to determine the efficiency of the isolates to produce antibacterial agents in interaction with uropathogens. Among 40 isolates, only 10 isolates identified as Lactobacilli and Lactococci were performant. The Screening showed that the inhibitor agent was proteinaceous substance. Therfore, it is noted that a treatment with presence of LAB is very encouraging as a result of the production of bacteriocin-like substance. On the other hand, LAB can be considered as a good alter-native to the large extent to the antibiotics in the treatment of UTI.


2015 ◽  
Vol 14 (2) ◽  
pp. 17-20 ◽  
Author(s):  
Abu Hena Md Saiful Karim Chowdhury ◽  
Md Anwar Husain ◽  
Nasima Akter ◽  
Md Abdul Mazed ◽  
Shakeel Ahmed ◽  
...  

Background: Antimicrobial resistance is now proclaimed as the most important challenge worldwide being faced by humanity in its fight against infectious diseases. Extended Spectrum b-Lactamases (ESBLs) producing organisms are increasing in number and causing more severe infections because of their continuous mutation and multidrug resistance property which make its treatment difficult.Aims: The present study was undertaken to detect the prevalence of the ESBLs producing bacteria in urinary tract infection.Methods: Isolated gram-negative bacteria initially screened by Minimum Inhibitory Concentration (MIC) ESBLs breakpoints. Then suspected ESBLs producers were confirmed by phenotypic confirmatory test.Results: 71 (59.17%) bacterial strains were isolated from 120 urine samples of patients of suspected urinary tract infection of which 66(92.96%) were gram-negative and 05(07.04%) were gram-positive. Among the isolated gram-negative bacteria 63(95.45%) were found suspected ESBLs producers of which 35(55.56%) were found as confirmed ESBL producers. The prevalence of ESBLs producing organisms in the present study were found to be 53.03% and Klebsiella spp. as most prevalent ESBLs producers.Conclusion: It is essential to report ESBL production along with routine sensitivity reporting, which will help the clinician in prescribing the proper antibiotics.Chatt Maa Shi Hosp Med Coll J; Vol.14 (2); Jul 2015; Page 17-20


2019 ◽  
Vol Volume 12 ◽  
pp. 2005-2013 ◽  
Author(s):  
Gopichand Pallam ◽  
Girija Agarwal ◽  
Mailan Natarajan ◽  
Jharna Mandal ◽  
Deepanjali Surendran ◽  
...  

2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


2005 ◽  
Vol 49 (6) ◽  
pp. 2343-2351 ◽  
Author(s):  
Patricia Komp Lindgren ◽  
Linda L. Marcusson ◽  
Dorthe Sandvang ◽  
Niels Frimodt-Møller ◽  
Diarmaid Hughes

ABSTRACT Resistance to fluoroquinolones in urinary tract infection (UTIs) caused by Escherichia coli is associated with multiple mutations, typically those that alter DNA gyrase and DNA topoisomerase IV and those that regulate AcrAB-TolC-mediated efflux. We asked whether a fitness cost is associated with the accumulation of these multiple mutations. Mutants of the susceptible E. coli UTI isolate Nu14 were selected through three to five successive steps with norfloxacin. Each selection was performed with the MIC of the selected strain. After each selection the MIC was measured; and the regions of gyrA, gyrB, parC, and parE, previously associated with resistance mutations, and all of marOR and acrR were sequenced. The first selection step yielded mutations in gyrA, gyrB, and marOR. Subsequent selection steps yielded mutations in gyrA, parE, and marOR but not in gyrB, parC, or acrR. Resistance-associated mutations were identified in almost all isolates after selection steps 1 and 2 but in less than 50% of isolates after subsequent selection steps. Selected strains were competed in vitro, in urine, and in a mouse UTI infection model against the starting strain, Nu14. First-step mutations were not associated with significant fitness costs. However, the accumulation of three or more resistance-associated mutations was usually associated with a large reduction in biological fitness, both in vitro and in vivo. Interestingly, in some lineages a partial restoration of fitness was associated with the accumulation of additional mutations in late selection steps. We suggest that the relative biological costs of multiple mutations may influence the evolution of E. coli strains that develop resistance to fluoroquinolones.


1993 ◽  
Vol 1 (2) ◽  
pp. 108-113 ◽  
Author(s):  
Sebastian Faro

The most commonly sexually transmitted bacteria areNeisseria gonorrhoeaeandChlamydia trachomatis.The quinolones ofloxacin and ciprofloxacin have been shown to have activity against both of these bacteria in vitro and in vivo. Ofloxacin is particularly well suited for the treatment ofN. gonorrhoeaeandC. trachomatiscervical infection, which can be considered the earliest manifestation of pelvic inflammatory disease (PID). Not only can ofloxacin be effectively used as a single agent, it is also useful in treating urinary tract infections caused by Enterobacteriaceae. Although it has moderate activity against anaerobes in general, ofloxacin does have activity against the anaerobes commonly isolated from female patients with soft tissue pelvic infections. Thus, ofloxacin has the potential for being utilized to treat early salpingitis.


1980 ◽  
Vol 6 (suppl A) ◽  
pp. 55-61 ◽  
Author(s):  
J. Klastersky ◽  
H. Gaya ◽  
S. H. Zinner ◽  
C. Bernard ◽  
J-C. Ryff ◽  
...  

2021 ◽  
Vol 118 (34) ◽  
pp. e2101952118
Author(s):  
Inokentijs Josts ◽  
Katharina Veith ◽  
Vincent Normant ◽  
Isabelle J. Schalk ◽  
Henning Tidow

Gram-negative bacteria take up the essential ion Fe3+ as ferric-siderophore complexes through their outer membrane using TonB-dependent transporters. However, the subsequent route through the inner membrane differs across many bacterial species and siderophore chemistries and is not understood in detail. Here, we report the crystal structure of the inner membrane protein FoxB (from Pseudomonas aeruginosa) that is involved in Fe-siderophore uptake. The structure revealed a fold with two tightly bound heme molecules. In combination with in vitro reduction assays and in vivo iron uptake studies, these results establish FoxB as an inner membrane reductase involved in the release of iron from ferrioxamine during Fe-siderophore uptake.


Sign in / Sign up

Export Citation Format

Share Document