scholarly journals Campylobacter coli: prevalence and antimicrobial resistance in antimicrobial-free (ABF) swine production systems

2005 ◽  
Vol 56 (4) ◽  
pp. 765-768 ◽  
Author(s):  
Wondwossen A. Gebreyes ◽  
Siddhartha Thakur ◽  
W. E. Morgan Morrow
2006 ◽  
Vol 69 (4) ◽  
pp. 743-748 ◽  
Author(s):  
WONDWOSSEN A. GEBREYES ◽  
SIDDHARTHA THAKUR ◽  
W. E. MORGAN MORROW

Conventional swine production evolved to routinely use antimicrobials, and common occurrence of antimicrobial-resistant Salmonella has been reported. There is a paucity of information on the antimicrobial resistance of Salmonella in swine production in the absence of antimicrobial selective pressure. Therefore, we compared the prevalence and antimicrobial resistance of Salmonella isolated from antimicrobial-free and conventional production systems. A total of 889 pigs and 743 carcasses were sampled in the study. Salmonella prevalence was significantly higher among the antimicrobial-free systems (15.2%) than the conventional systems (4.2%) (odds ratio [OR] = 4.23; P < 0.05). Antimicrobial resistance was detected against 10 of the 12 antimicrobials tested. The highest frequency of resistance was found against tetracycline (80%), followed by streptomycin (43.4%) and sulfamethoxazole (36%). Frequency of resistance to most classes of antimicrobials (except tetracycline) was significantly higher among conventional farms than antimicrobial-free farms, with ORs ranging from 2.84 for chloramphenicol to 23.22 for kanamycin at the on-farm level. A total of 28 antimicrobial resistance patterns were detected. A resistance pattern with streptomycin, sulfamethoxazole, and tetracycline (n = 130) was the most common multidrug resistance pattern. There was no significant difference in the proportion of isolates with this pattern between the conventional (19.5%) and the antimicrobial-free systems (18%) (OR = 1.8; P > 0.05). A pentaresistance pattern with ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline was strongly associated with antimicrobial-free groups (OR = 5.4; P = 0.01). While showing the higher likelihood of finding antimicrobial resistance among conventional herds, this study also implies that specific multidrug-resistant strains may occur on antimicrobial-free farms. A longitudinal study with a representative sample size is needed to reach more conclusive results of the associations detected in this study.


2008 ◽  
Vol 74 (1) ◽  
pp. 342-342
Author(s):  
Siddhartha Thakur ◽  
W. E. Morgan Morrow ◽  
Julie A. Funk ◽  
Peter B. Bahnson ◽  
Wondwossen A. Gebreyes

2005 ◽  
Vol 68 (11) ◽  
pp. 2402-2410 ◽  
Author(s):  
SIDDHARTHA THAKUR ◽  
WONDWOSSEN A. GEBREYES

The objectives of this study were to determine and compare the prevalence and antimicrobial resistance of Campylobacter species in swine reared in conventional and antimicrobial-free (ABF) production systems. Campylobacter coli was the predominant species, with 1,459 isolates (99%) in the study. We found significantly higher prevalence of C. coli on the ABF farms (77.3%) than on the conventional farms (27.6%) among pigs at the nursery stage (P < 0.001). At slaughter, we found significantly higher prevalence at the postevisceration than at the preevisceration stage (P < 0.001) in both production systems. The 1,459 C. coli isolates were tested with the agar dilution method for their susceptibility to six antimicrobials: chloramphenicol, ciprofloxacin, erythromycin, gentamicin, nalidixic acid, and tetracycline. Resistance was most prevalent against tetracycline (66.2% of isolates) followed by erythromycin (53.6% of isolates). Frequency of resistance to these two antimicrobials was significantly higher among conventional herds (83.4% for tetracycline and 77% for erythromycin) than among ABF herds (56.2% for tetracycline and 34.5% for erythromycin). Resistance to ciprofloxacin at the MIC (>4 mg/liter) was also found on farms in both systems. Multidrug-resistant C. coli strains were detected in both the conventional (7%) and ABF (4%) herds. This is the first report of ciprofloxacin-resistant strains of C. coli in ABF pigs in the United States. These findings highlight the high prevalence of antimicrobial-resistant C. coli in both conventional and ABF pig production systems and have significant implications for the persistence of antimicrobial-resistant Campylobacter in the pig production environment regardless of levels of antimicrobial use.


2006 ◽  
Vol 72 (8) ◽  
pp. 5666-5669 ◽  
Author(s):  
Siddhartha Thakur ◽  
W. E. Morgan Morrow ◽  
Julie A. Funk ◽  
Peter B. Bahnson ◽  
Wondwossen A. Gebreyes

ABSTRACT Multilocus sequence typing of 151 Campylobacter coli isolates from swine reared in conventional (n = 74) and antimicrobial-free (n = 77) production systems revealed high genotypic diversity. Sequence type (ST) 1413 was predominant and observed among ciprofloxacin-resistant strains. We identified a C. coli ST 828 clonal complex consisting of isolates from both production systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Medelin Ocejo ◽  
Beatriz Oporto ◽  
José Luis Lavín ◽  
Ana Hurtado

AbstractCampylobacter, a leading cause of gastroenteritis in humans, asymptomatically colonises the intestinal tract of a wide range of animals.Although antimicrobial treatment is restricted to severe cases, the increase of antimicrobial resistance (AMR) is a concern. Considering the significant contribution of ruminants as reservoirs of resistant Campylobacter, Illumina whole-genome sequencing was used to characterise the mechanisms of AMR in Campylobacter jejuni and Campylobacter coli recovered from beef cattle, dairy cattle, and sheep in northern Spain. Genome analysis showed extensive genetic diversity that clearly separated both species. Resistance genotypes were identified by screening assembled sequences with BLASTn and ABRicate, and additional sequence alignments were performed to search for frameshift mutations and gene modifications. A high correlation was observed between phenotypic resistance to a given antimicrobial and the presence of the corresponding known resistance genes. Detailed sequence analysis allowed us to detect the recently described mosaic tet(O/M/O) gene in one C. coli, describe possible new alleles of blaOXA-61-like genes, and decipher the genetic context of aminoglycoside resistance genes, as well as the plasmid/chromosomal location of the different AMR genes and their implication for resistance spread. Updated resistance gene databases and detailed analysis of the matched open reading frames are needed to avoid errors when using WGS-based analysis pipelines for AMR detection in the absence of phenotypic data.


Sign in / Sign up

Export Citation Format

Share Document