Comparison of Prevalence, Antimicrobial Resistance, and Occurrence of Multidrug-Resistant Salmonella in Antimicrobial-Free and Conventional Pig Production

2006 ◽  
Vol 69 (4) ◽  
pp. 743-748 ◽  
Author(s):  
WONDWOSSEN A. GEBREYES ◽  
SIDDHARTHA THAKUR ◽  
W. E. MORGAN MORROW

Conventional swine production evolved to routinely use antimicrobials, and common occurrence of antimicrobial-resistant Salmonella has been reported. There is a paucity of information on the antimicrobial resistance of Salmonella in swine production in the absence of antimicrobial selective pressure. Therefore, we compared the prevalence and antimicrobial resistance of Salmonella isolated from antimicrobial-free and conventional production systems. A total of 889 pigs and 743 carcasses were sampled in the study. Salmonella prevalence was significantly higher among the antimicrobial-free systems (15.2%) than the conventional systems (4.2%) (odds ratio [OR] = 4.23; P < 0.05). Antimicrobial resistance was detected against 10 of the 12 antimicrobials tested. The highest frequency of resistance was found against tetracycline (80%), followed by streptomycin (43.4%) and sulfamethoxazole (36%). Frequency of resistance to most classes of antimicrobials (except tetracycline) was significantly higher among conventional farms than antimicrobial-free farms, with ORs ranging from 2.84 for chloramphenicol to 23.22 for kanamycin at the on-farm level. A total of 28 antimicrobial resistance patterns were detected. A resistance pattern with streptomycin, sulfamethoxazole, and tetracycline (n = 130) was the most common multidrug resistance pattern. There was no significant difference in the proportion of isolates with this pattern between the conventional (19.5%) and the antimicrobial-free systems (18%) (OR = 1.8; P > 0.05). A pentaresistance pattern with ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline was strongly associated with antimicrobial-free groups (OR = 5.4; P = 0.01). While showing the higher likelihood of finding antimicrobial resistance among conventional herds, this study also implies that specific multidrug-resistant strains may occur on antimicrobial-free farms. A longitudinal study with a representative sample size is needed to reach more conclusive results of the associations detected in this study.

2018 ◽  
Vol 16 (2) ◽  
pp. 178-183
Author(s):  
Dhiraj Shrestha ◽  
Pratigya Thapa ◽  
Dinesh Bhandari ◽  
Hiramani Parajuli ◽  
Prakash Chaudhary ◽  
...  

Background: The study was designed to provide account of etiological agents of urinary tract infection in pediatric patients and the antimicrobial resistance pattern plus biofilm producing profile of the isolates.Methods: The prospective study was conducted in Alka Hospital, Nepal with 353 clean catch urine samples from children. It was obtained during July 2014 to January 2015 which were first cultured by semi-quantitative method, followed by antimicrobial susceptibility testing and biofilm production assay on Congo red agar. Multidrug- resistance, extensively drug- resistance and pandrug- resistance among isolates were considered as per international consensus.Results: Out of 353 samples, 64 (18.13%) showed positive growth in culture, confirming urinary tract infection. E. coli, 44 (68.8%) was the predominant organism followed by Klebsiella spp. 6 (14.1%). Most E. coli were sensitive to amikacin (93.2%) followed by nitrofurantoin (86.4%), and highly resistant to ampicillin (95.5%). Of 64 isolates, 23 (35.93%) were found to be multidrug- resistant strains. Biofilm was produced by 36 (56.25%) isolates.Conclusions: This study showed higher biofilm production and resistance to in-use antibiotics rendering ineffective for empirical use. Regular surveillance of resistance patterns should be done to regulate multidrug- resistant bugs and to ensure effective management of urinary tract infection in children in a tertiary care setups.Keywords: AMR; antimicrobial resistance; biofilm; urinary tract infection; UTI.


Author(s):  
Vassiliki Pitiriga ◽  
Petros Kanellopoulos ◽  
Ioannis Bakalis ◽  
Elsa Kampos ◽  
Ioannis Sagris ◽  
...  

Abstract Background Placement of central-venous catheters (CVCs) is an essential practice in the management of hospitalized patients, however, insertion at the commonly used sites has often the potential of inducing major complications. Neverthelss, the impact of specific site central line catheter insertion on catheter-associated bloodstream infections (CLABSIs) has not been clarified yet in the literature. Objective The aim of the study was to compare CLABSIs and catheter colonization rates among the three catheter insertion sites: subclavian (SC), internal jugular (IJ) and femoral (FEM) in hospitalized patients. Moreover, to analyze the distribution of pathogens and their antimicrobial resistance profiles at these three sites, concurrently. Methods We performed a retrospective analysis of data collected prospectively from all catheterized patients at a tertiary care Greek hospital from May 2016 to May 2018. Data was collected on 1414 CVCs and 13,054 CVC-days. Results Τhe incidence of CLABSIs among the three sites was as follows: SC:5.1/1000 catheter/days, IJ: 3.73/1000 catheter/days and FEM: 6.93/1000 catheter/days (p = 0.37). The incidence of colonization was as follows: SC:13.39/1000 catheter/days; IJ:7.34/ 1000 catheter/days; FEM:22.91/1000 catheter/days (p = 0.009). MDROs predominated in both CLABSIs and tip colonizations (59.3 and 61%, respectively) with Acinetobacter baumanii being the predominant pathogen (16/59, 27.1% and 44/144, 30.5%, respectively). The incidence of CLABSIs due to multidrug-resistant organisms (MDROs) was as follows: SC:3.83/1000 catheter days; IJ:1.49/1000 catheter days; FEM:5.86/1000 catheter days (p = 0.04). The incidence of tip colonization by MDROs among the 3 sites was as follows: SC:8.93/1000 catheter/days; IJ:4.48/1000 catheter/days; FEM:12.79/1000 catheter/days (p = 0.06). There was no significant difference in the type of pathogen isolated among site groups for both CLABSIs and tip colonizations. Conclusions FEM site of catheter insertion was associated with a higher rate of bloodstream infection and catheters’ colonization compared to IJ and SC sites. Furthermore, this survey highlights the changing trend of the distribution of frequent pathogens and resistance patterns towards MDR Gram-negative pathogens, underscoring the need for consistent monitoring of antimicrobial resistance patterns of these specific infections.


2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Lufuno Phophi ◽  
Inge-Marie Petzer ◽  
Daniel Nenene Qekwana

Abstract Background Increased prevalence of antimicrobial resistance, treatment failure, and financial losses have been reported in dairy cows with coagulase-negative Staphylococcus (CoNS) clinical mastitis, however, studies on CoNS infections are limited in South Africa. Therefore, the objectives of this study were to investigate the antimicrobial resistance patterns and biofilm formation in CoNS isolated from cow milk samples submitted to the Onderstepoort Milk Laboratory. Results A total of 142 confirmed CoNS isolates were used for this study. Biofilm formation was identified in 18% of CoNS tested. Staphylococcus chromogenes (11%) had the highest proportion of biofilm formation followed by S. haemolyticus (4.0%), S. epidermidis, S. hominis, S. xylosus, and S. simulans with 1% respectively. Ninety percent (90%) of CoNS were resistant to at least one antimicrobial (AMR) and 51% were multidrug-resistant (MDR). Resistance among CoNS was the highest to ampicillin (90%) and penicillin (89%), few isolates resistant to cefoxitin and vancomycin, 9% respectively. Similarly, MDR-S. haemolyticus (44%), MDR-S. epidermidis (65%), and MDR-S. chromogenes (52%) were mainly resistant to penicillins. The most common resistance patterns observed were resistance to penicillin-ampicillin (16%) and penicillin-ampicillin-erythromycin (10%). Only 42% of biofilm positive CoNS were MDR. Conclusion The majority of CoNS in this study were resistance to penicillins. In addition, most isolates were β-lactam resistant and MDR. Biofilm formation among the CoNS in this study was uncommon and there was no significant difference in the proportion of MDR-CoNS based on the ability to form a biofilm.


2015 ◽  
Vol 51 (6) ◽  
pp. 365-371 ◽  
Author(s):  
Nuno Beça ◽  
Lucinda Janete Bessa ◽  
Ângelo Mendes ◽  
Joana Santos ◽  
Liliana Leite-Martins ◽  
...  

Staphylococcus pseudintermedius is the most prevalent coagulase-positive Staphylococcus inhabitant of the skin and mucosa of dogs and cats, causing skin and soft tissue infections in these animals. In this study, coagulase-positive Staphylococcus species were isolated from companion animals, veterinary professionals, and objects from a clinical veterinary environment by using two particular culture media, Baird-Parker RPF agar and CHROMagar Staph aureus. Different morphology features of colonies on the media allowed the identification of the species, which was confirmed by performing a multiplex polymerase chain reaction (PCR). Among 23 animals, 15 (65.2%) harbored coagulase-positive Staphylococcus, being 12 Staphylococcus pseudintermedius carriers. Four out of 12 were methicillin-resistant S. pseudintermedius (MRSP). All veterinary professionals had coagulase-positive Staphylococcus (CoPS) species on their hands and two out of nine objects sampled harbored MRSP. The antimicrobial-resistance pattern was achieved for all isolates, revealing the presence of many multidrug-resistant CoPS, particularly S. pseudintermedius. The combined analysis of the antimicrobial-resistance patterns shown by the isolates led to the hypothesis that there is a possible crosscontamination and dissemination of S. aureus and S. pseudintermedius species between the three types of carriers sampled in this study that could facilitate the spread of the methicillin-resistance phenotype.


2018 ◽  
Vol 16 (2) ◽  
pp. 178-183
Author(s):  
Dhiraj Shrestha ◽  
Pratigya Thapa ◽  
Dinesh Bhandari ◽  
Hiramani Parajuli ◽  
Prakash Chaudhary ◽  
...  

Background: The study was designed to provide account of etiological agents of urinary tract infection in pediatric patients and the antimicrobial resistance pattern plus biofilm producing profile of the isolates.Methods: The prospective study was conducted in Alka Hospital, Nepal with 353 clean catch urine samples from children. It was obtained during July 2014 to January 2015 which were first cultured by semi-quantitative method, followed by antimicrobial susceptibility testing and biofilm production assay on Congo red agar. Multidrug- resistance, extensively drug- resistance and pandrug- resistance among isolates were considered as per international consensus.Results: Out of 353 samples, 64 (18.13%) showed positive growth in culture, confirming urinary tract infection. E. coli, 44 (68.8%) was the predominant organism followed by Klebsiella spp. 6 (14.1%). Most E. coli were sensitive to amikacin (93.2%) followed by nitrofurantoin (86.4%), and highly resistant to ampicillin (95.5%). Of 64 isolates, 23 (35.93%) were found to be multidrug- resistant strains. Biofilm was produced by 36 (56.25%) isolates.Conclusions: This study showed higher biofilm production and resistance to in-use antibiotics rendering ineffective for empirical use. Regular surveillance of resistance patterns should be done to regulate multidrug- resistant bugs and to ensure effective management of urinary tract infection in children in a tertiary care setups.


2020 ◽  
Vol 20 (2) ◽  
pp. 160-166
Author(s):  
Seyedeh Hanieh Eshaghi Zadeh ◽  
Hossein Fahimi ◽  
Fatemeh Fardsanei ◽  
Mohammad Mehdi Soltan Dallal

Background: Salmonellosis is a major food-borne disease worldwide. The increasing prevalence of antimicrobial resistance among food-borne pathogens such as Salmonella spp. is concerning. Objective: The main objective of this study is to identify class 1 integron genes and to determine antibiotic resistance patterns among Salmonella isolates from children with diarrhea. Methods: A total of 30 Salmonella isolates were recovered from children with diarrhea. The isolates were characterized for antimicrobial susceptibility and screened for the presence of class 1 integron genes (i.e. intI1, sulI1, and qacEΔ1). Results: The most prevalent serotype was Enteritidis 36.7%, followed by Paratyphi C (30%), and Typhimurium (16.7%). The highest rates of antibiotic resistance were obtained for nalidixic acid (53.3%), followed by streptomycin (40%), and tetracycline (36.7%). Regarding class 1 integrons, 36.7%, 26.7%, and 33.3% of the isolates carried intI1, SulI, and qacEΔ1, respectively, most of which (81.8%) were multidrug-resistant (MDR). Statistical analysis revealed that the presence of class 1 integron was significantly associated with resistance to streptomycin and tetracycline (p = 0.042). However, there was no association between class 1 integron and other antibiotics used in this study (p > 0.05). Conclusion: The high frequency of integron class 1 gene in MDR Salmonella strains indicates that these mobile genetic elements are versatile among different Salmonella serotypes, and associated with reduced susceptibility to many antimicrobials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mojisola C. Hosu ◽  
Sandeep D. Vasaikar ◽  
Grace E. Okuthe ◽  
Teke Apalata

AbstractThe proliferation of extended spectrum beta-lactamase (ESBL) producing Pseudomonas aeruginosa represent a major public health threat. In this study, we evaluated the antimicrobial resistance patterns of P. aeruginosa strains and characterized the ESBLs and Metallo- β-lactamases (MBL) produced. Strains of P. aeruginosa cultured from patients who attended Nelson Mandela Academic Hospital and other clinics in the four district municipalities of the Eastern Cape between August 2017 and May 2019 were identified; antimicrobial susceptibility testing was carried out against thirteen clinically relevant antibiotics using the BioMérieux VITEK 2 and confirmed by Beckman autoSCAN-4 System. Real-time PCR was done using Roche Light Cycler 2.0 to detect the presence of ESBLs; blaSHV, blaTEM and blaCTX-M genes; and MBLs; blaIMP, blaVIM. Strains of P. aeruginosa demonstrated resistance to wide-ranging clinically relevant antibiotics including piperacillin (64.2%), followed by aztreonam (57.8%), cefepime (51.5%), ceftazidime (51.0%), piperacillin/tazobactam (50.5%), and imipenem (46.6%). A total of 75 (36.8%) multidrug-resistant (MDR) strains were observed of the total pool of isolates. The blaTEM, blaSHV and blaCTX-M was detected in 79.3%, 69.5% and 31.7% isolates (n = 82), respectively. The blaIMP was detected in 1.25% while no blaVIM was detected in any of the strains tested. The study showed a high rate of MDR P. aeruginosa in our setting. The vast majority of these resistant strains carried blaTEM and blaSHV genes. Continuous monitoring of antimicrobial resistance and strict compliance towards infection prevention and control practices are the best defence against spread of MDR P. aeruginosa.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 335
Author(s):  
Michał Michalik ◽  
Maja Kosecka-Strojek ◽  
Mariola Wolska ◽  
Alfred Samet ◽  
Adrianna Podbielska-Kubera ◽  
...  

Linezolid is currently used to treat infections caused by multidrug-resistant Gram-positive cocci. Both linezolid-resistant S. aureus (LRSA) and coagulase-negative staphylococci (CoNS) strains have been collected worldwide. Two isolates carrying linezolid resistance genes were recovered from laryngological patients and characterized by determining their antimicrobial resistance patterns and using molecular methods such as spa typing, MLST, SCCmec typing, detection of virulence genes and ica operon expression, and analysis of antimicrobial resistance determinants. Both isolates were multidrug resistant, including resistance to methicillin. The S. aureus strain was identified as ST-398/t4474/SCCmec IVe, harboring adhesin, hemolysin genes, and the ica operon. The S. haemolyticus strain was identified as ST-42/mecA-positive and harbored hemolysin genes. Linezolid resistance in S. aureus strain was associated with the mutations in the ribosomal proteins L3 and L4, and in S. haemolyticus, resistance was associated with the presence of cfr gene. Moreover, S. aureus strain harbored optrA and poxtA genes. We identified the first case of staphylococci carrying linezolid resistance genes from patients with chronic sinusitis in Poland. Since both S. aureus and CoNS are the most common etiological factors in laryngological infections, monitoring of such infections combined with surveillance and infection prevention programs is important to decrease the number of linezolid-resistant staphylococcal strains.


2001 ◽  
Vol 45 (4) ◽  
pp. 1037-1042 ◽  
Author(s):  
Daniel F. Sahm ◽  
James A. Karlowsky ◽  
Laurie J. Kelly ◽  
Ian A. Critchley ◽  
Mark E. Jones ◽  
...  

ABSTRACT Although changing patterns in antimicrobial resistance inStreptococcus pneumoniae have prompted several surveillance initiatives in recent years, the frequency with which these studies are needed has not been addressed. To approach this issue, the extent to which resistance patterns change over a 1-year period was examined. In this study we analyzed S. pneumoniaeantimicrobial susceptibility results produced in our laboratory with isolates obtained over 2 consecutive years (1997–1998 and 1998–1999) from the same 96 institutions distributed throughout the United States. Comparison of results revealed increases in resistant percentages for all antimicrobial agents studied except vancomycin. For four of the agents tested (penicillin, cefuroxime, trimethoprim-sulfamethoxazole, and levofloxacin), the increases were statistically significant (P < 0.05). Resistance to the fluoroquinolone remained low in both years (0.1 and 0.6%, respectively); in contrast, resistance to macrolides was consistently greater than 20%, and resistance to trimethoprim-sulfamethoxazole increased from 13.3 to 27.3%. Multidrug resistance, concurrent resistance to three or more antimicrobials of different chemical classes, also increased significantly between years, from 5.9 to 11%. The most prevalent phenotype was resistance to penicillin, azithromycin (representative macrolide), and trimethoprim-sulfamethoxazole. Multidrug-resistant phenotypes that included fluoroquinolone resistance were uncommon; however, two phenotypes that included fluoroquinolone resistance not found in 1997–1998 were encountered in 1998–1999. This longitudinal surveillance study of resistance inS. pneumoniae revealed that significant changes do occur in just a single year and supports the need for surveillance at least on an annual basis, if not continuously.


Sign in / Sign up

Export Citation Format

Share Document