scholarly journals Sensitive Spectrophotometric Determination of Nitrite in Human Saliva and Rain Water and of Nitrogen Dioxide in the Atmosphere

2001 ◽  
Vol 84 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Murad I H Helaleh ◽  
Takashi Korenaga

Abstract A new simple, sensitive, and selective spectrophotometric method was developed for the determination of nitrite. The method is based on the reaction of nitrite with sulfathiazole in acidic medium to form a diazonium cation, which is subsequently coupled with N-(1-naphthyl)ethylenediamine dihydrochloride to form a highly stable, violet azo dye. The reaction product has an absorption maximum at 546 nm and obeys Beer's law over a nitrite range of 0.054–0.816 μg/mL. The molar absorptivity of the colored compound is 4.61 × 104 L/(mol·cm). The detection limit is 12.1 μg/L. The relative standard deviation is 0.85% for 5 determinations of nitrite at 0.27 μg/mL. The reproducibility and validity of the proposed method are discussed in the present paper. The simplicity of the method is demonstrated by the high stability of the azo-dye product as well as the short time required for its complete formation in a reaction at room temperature without pH control or extra extraction. The sensitivity of the method is shown by the successful determination of nitrite in human saliva and rain water, and of nitrogen dioxide in the atmosphere. The results compare favorably with those obtained by the reference method. The selectivity of the method is indicated by its freedom from most interferences, even at high concentrations of nitrate (500 μg/mL).

2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Hemavathi N. Deepakumari ◽  
Hosakere D. Revanasiddappa

A rapid, simple, and sensitive spectrophotometric method has been described for the determination of nimodipine in bulk drug, tablets, and injection. The proposed method is based on the diazotization of reduced nimodipine with nitrous acid followed by coupling with phloroglucinol to form colored azo dye and showing absorption maximum () at 410 nm. The formed colored azo dye is stable for about more than 2 h. The method obeyed Beer’s law over the concentration range of 0–25 μg/mL and the corresponding molar absorptivity value is  L/moL/cm. The Sandell sensitivity values limits of detection (LOD) and quantification (LOQ) values have also been reported for the developed method. The accuracy and precision of the method was evaluated on intra- and interday basis; the relative error (%RE) and the relative standard deviation (RSD) were <2.0%. All variables have been optimized and the presented reaction sequence was applied to the analysis of nimodipine in bulk drug, tablets, and injections. The performance of this method was evaluated in terms of Student’s -test and variance ratio -test to find out the significance of proposed method over the reference method.


2018 ◽  
Vol 15 (2) ◽  
pp. 6186-6198
Author(s):  
Abdul Aziz Ramadan ◽  
Souad Zeino

A simple, direct and accurate spectrophotometric method has been developed for the determination of Glimepiride (GLM) in pure and pharmaceutical formulations by complex formation with bromocresol purple (BCP). The method involves the formation of a yellow ion-pair complex between BCP with glimepiride at pH<3,8; after reacting GLM with Na2CO3 to give C24H33N4H+O5NaS which is extracted by chloroform. The formed complex [GLM]:[ BCP] was measured at lmax 418 nm against the reagent blank prepared in the same manner. Variables were studied in order to optimize the reaction conditions. Molar absorptivity (e) for complex was  20600  L.mol-1.cm-1. Beer’s law was obeyed in the concentration range of  1.226 – 46.608   mg.mL-1 in present of 5.0x10-4 mol/l of BCP with good correlation coefficient (R2= 0.9997). The relative standard deviation did not exceed 3.6%. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.15 and 0.46 mg.mL-1, respectively. The proposed method was validated for specificity, linearity, precision and accuracy, repeatability, sensitivity (LOD and LOQ)  and robustness. The developed method is applicable for the determination of GLM in  pure and different dosage forms with average assay of 98.8 to 102.0% and the results are in good agreement with those obtained by the  RP-HPLC reference method.  


2007 ◽  
Vol 4 (2) ◽  
pp. 173-179 ◽  
Author(s):  
K. Basavaiah ◽  
U. R. Anil Kumar

A simple spectrophotometric method is proposed for the determination of zidovudine(ZDV) in bulk drug and in pharmaceutical preparations. The method is based on the oxidation of ZDV by a known excess of oxidant N-bromosuccinimide (NBS), in buffer medium of pH 1.5, followed by the estimation of unreacted amount of oxidant with metol and sulphanilic acid. The reacted oxidant corresponds to the amount ZDV. The purple-red reaction product absorbs maximally at 530 nm and Beer’s law is obeyed over a range 5 to 75 μg mL-1. The apparent molar absorptivity is calculated to be 5.1×103L mol-1cm-1, and the corresponding Sandell sensitivity value is 0.052 μg cm-2. The limit of detection and quantification are found to be 0.90 and 2.72, respectively. Intra-day and inter-day precision and accuracy of the developed methods were evaluated as per the current ICH guidelines. The method was successfully applied to the assay of ZDV in tablet/capsule preparations and the results were statistically compared with those of the reference method by applying the Student’s t-test and F-test. No interference was observed from the common tablet/capsule excipients. The accuracy of the method was further ascertained by performing recovery studies via standard-addition method.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Ibrahim A. Darwish ◽  
Heba H. Abdine ◽  
Sawsan M. Amer ◽  
Lama I. Al-Rayes

Simple and rapid spectrophotometric method has been developed and validated for the determination of paroxetine (PRX) in tablets. The proposed method was based on nucleophilic substitution reaction of PRX with 1,2-naphthoquinone-4-sulphonate (NQS) in an alkaline medium to form an orange-colored product of maximum absorption peak () at 488 nm. The stoichiometry and kinetics of the reaction were studied, and the reaction mechanism was postulated. Under the optimized reaction conditions, Beer's law correlating the absorbance (A) with PRX concentration (C) was obeyed in the range of 1–8 g . The regression equation for the calibration data was: A = 0.0031 + 0.1609 C, with good correlation coefficients (0.9992). The molar absorptivity () was L  1 . The limits of detection and quantitation were 0.3 and 0.8 g , respectively. The precision of the method was satisfactory; the values of relative standard deviations did not exceed 2%. The proposed method was successfully applied to the determination of PRX in its pharmaceutical tablets with good accuracy and precisions; the label claim percentage was %. The results obtained by the proposed method were comparable with those obtained by the official method.


2018 ◽  
Vol 33 (2) ◽  
pp. 21
Author(s):  
Kanakapura Basavaiah ◽  
Okram Zenita Devi

Two sensitive spectrophotometric methods are described for the determination of simvastatin (SMT) in bulk drug and in tablets. The methods are based on the oxidation of SMT by a measured excess of cerium (IV) in acid medium followed by determination of unreacted oxidant by two different reaction schemes. In one procedure (method A), the residual cerium (IV) is reacted with a fixed concentration of ferroin and the increase in absorbance is measured at 510 nm. The second approach (method B) involves thereduction of the unreacted cerium (IV) with a fixed quantity of iron (II), and the resulting iron (III) is complexed with thiocyanate and the absorbance measured at 470 nm. In both methods, the amount of cerium (IV) reacted corresponds to SMT concentration. The experimental conditions for both methods were optimized. In method A, the absorbance is found to increase linearly with SMT concentration (r = 0.9995) whereas in method B, the same decreased (r = -0.9943). The systems obey Beer’s law for 0.6-7.5 and 0.5-5.0 μg mL-1 for method A and method B, respectively. The calculated molar absorptivity values are 2.7 X 104 and 1.06 X 105 Lmol-1 cm-1, respectively; and the corresponding sandel sensitivity values are 0.0153 and 0.0039μg cm-2, respectively. The limit of detection (LOD) and quantification (LOQ) are reported for both methods. Intra-day and inter-day precision, and accuracy of the methods were established as per the current ICH guidelines. The methods were successfully applied to the determination of SMT in tablets and the results were statistically compared with those of the reference method by applying the Student’s t-test and F-test. No interference was observed from the common excipients added to tablets. The accuracy and validity of the methods were further ascertained by performing recovery experiments via standard addition procedure.


Author(s):  
MONIR Z. SAAD ◽  
ATEF AMER ◽  
KHALED ELGENDY ◽  
BASEM ELGENDY

Objective: Two simple, sensitive and accurate spectrophotometric methods have been developed for the determination of sofosbuvir (SOF) and daclatasvir (DAC) in pure forms and pharmaceutical formulations. Methods: The proposed methods are based on the oxidation of SOF and DAC by a known excess of cerium(IV) ammonium nitrate in sulphuric acid medium followed by determination of unreacted cerium(IV) by adding a fixed amount of indigo carmine (IC) and alizarin red S (ARS) dyes followed by measuring the absorbance at 610 and 360 nm, respectively. The experimental conditions affecting the reaction were studied and optimized. Results: The beer’s law was obeyed in the concentration ranges of 0.2-3.0, 0.2-4.0 for SOF and 0.5-4.5 and 0.5-5.0 μg/ml for DAC using IC and ARS methods, respectively with a correlation coefficient ≥ 0.9991. The calculated molar absorptivity values are 2.354 × 104, 1.933 × 104 for SOF and 1.786 × 104 and 2.015 × 104 L/mol. cm for DAC using IC and ARS methods, respectively u. The limits of detection and quantification are also reported. Intra-day and inter-day precision and accuracy of the methods have been evaluated. Conclusion: The methods were successfully applied to the assay of SOF and DAC in tablets and the results were statistically compared with those of the reference method by applying Student’s t-test and F-test. No interference was observed from the common tablet excipients. The accuracy and reliability of the methods were further ascertained by performing recovery studies using the standard addition method.


2010 ◽  
Vol 7 (1) ◽  
pp. 704-712
Author(s):  
Baghdad Science Journal

Simple, rapid and sensitive spectrophotometric method was proposed for the analysis of metoclopramide hydrochloride (MPH) in pure form as well as in pharmaceutical tablets. The method is based on the diazotization reaction of MPH with sodium nitrite in hydrochloric acid medium to form diazonium salt, which is coupled with 1-naphthol in sodium hydroxide medium to form azo dye, showing absorption maxima at 550 nm. Beer’s law is obeyed in the concentration range of 0.4 – 18 µg mL-1 of MPH with detection limit 0.5448 µg mL-1. The molar absorptivity and Sandell’s sensitivity are 3.4969 × 104 L mol-1 cm-1 and 0.0101 µg cm-2, respectively. The method was successfully applied to the determination of MPH in pharmaceutical tablets without any interference from common excipients used as additives in tablets. The results agree favorably with the official British Pharmacopoeia method.


2008 ◽  
Vol 27 (2) ◽  
pp. 149 ◽  
Author(s):  
Ivana Savić ◽  
Goran Nikolić ◽  
Vladimir Banković

Simple, accurate and reproducible UV-spectrophotometric method was developed and validated for the estimation of phenylephrine hydrochloride in pharmaceutical nasal drops formulations. Phenylephrine hydrochloride was estimated at 291 nm in 1 mol⋅dm-3 sodium hydroxide (pH 13.5). Beer’s law was obeyed in the concentration range of 10–100 μg⋅cm−3 (r2 = 0.9990) in the sodium hydroxide medium. The apparent molar absorptivity was found to be 1.63×103 dm3⋅mol−1⋅cm−1. The method was tested and validated for various parameters according to the ICH (International Conference on Harmonization) guidelines. The detection and quantitation limits were found to be 0.892 and 2.969 μg⋅cm−3, respectively. The proposed method was successfully applied for the determination of phenylephrine hydrochloride in pharmaceutical nasal drops formulations. The results demonstrated that the procedure is accurate, precise and reproducible (relative standard deviation < 1 %), while being simple, cheap and less time consuming, and hence can be suitably applied for the estimation of phenylephrine hydrochloride in different dosage forms.


2013 ◽  
Vol 10 (3) ◽  
pp. 1005-1013 ◽  
Author(s):  
Baghdad Science Journal

A simple, accurate, precise, rapid, economical and a high sensitive spectrophotometric method has been developed for the determination of tadalafil in pharmaceutical preparations and industrial wastewater samples, which shows a maximum absorbance at 204 nm in 1:1 ethanol-water. Beer's law was obeyed in the range of 1-7?g/ mL ,with molar absorptivity and Sandell ? s sensitivity of 0.783x105l/mol.cm and 4.97 ng/cm2respectively, relative standard deviation of the method was less than 1.7%, and accuracy (average recovery %) was 100 ± 0. 13. The limits of detection and quantitation are 0.18 and 0.54 µg .ml-1, respectively. The method was successfully applied to the determination of tadalafil in some pharmaceutical formulations (tablets) and industrial wastewater samples. The proposed method was validated by sensitivity and precision which proves suitability for the routine analysis of tadalafil in true samples.


2001 ◽  
Vol 84 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Inês P A Morais ◽  
António O S S Rangel ◽  
M Renata S Souto

Abstract A turbidimetric flow-injection system was developed for the determination of sulfate in natural and residual water samples, with no previous treatment, using spectrophotometric detection. The precipitating agent, 7.0% (w/v) barium chloride solution prepared in 0.10% (w/v) polyvinyl alcohol, was added by using the merging-zones approach. A 100 mg/L sulfate solution in 0.07M nitric acid was mixed with the sample before it entered the injection loop to improve the detection limit, provide in-line pH adjustment, and prevent the interference of some anionic species. The relative standard deviations of the results were between 1.4 and 3.0% and were in agreement with results obtained by the reference method. Samples within a linear concentration range of 10–120 mg SO42−/L can be analyzed at a rate of 40/h. The detection limit is 5 mg SO42−/L.


Sign in / Sign up

Export Citation Format

Share Document