scholarly journals 191 Effects of injectable vitamin C at weaning and prior to transit on growth performance and immune function of beef steers

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 152-153
Author(s):  
Aubree M Beenken ◽  
Erin L Deters ◽  
Colten W Dornbach ◽  
Stephanie L Hansen ◽  
Joshua C McCann ◽  
...  

Abstract Ninety-one early-weaned (65 ± 11 d) Angus steers (92 ± 4 kg) were blocked by age to a 2 × 2 factorial examining effects of injectable vitamin C (VC) at weaning and/or prior to transport to the feedlot on antibody titers and growth performance. Injections (20 mL/steer) of VC (250 mg sodium ascorbate/mL) or saline (SAL) were given at time of weaning on d 0 (WEAN) and/or prior to a 6 hr trucking event to a feedlot on d 49 (TRANS). Steers were given booster vaccinations on d 0. Steers were weighed on d 0, 1, 14, 48, 49, 64, 106, and 107. Blood was collected (12 steers/treatment) on d 0, 1, 2, 14, 49 (pre- and post-transit), 50, and 51. Data were analyzed via Proc-Mixed of SAS (experimental unit = steer; n = 22–23/treatment) with fixed effects of block, WEAN, TRANS, and WEAN × TRANS. Plasma ascorbate concentrations for weaning (d 0, 1, and 2) and transit (d 49-pre-trucking, 49-post-trucking, 50, and 51) were analyzed as repeated measures (repeated effect = day). Plasma ascorbate concentrations were greater on d 1 and 2 for steers that received VC at weaning (VC = 19.6, SAL = 8.8 ± 1.26 µM; WEAN × day P < 0.01). Similarly, ascorbate concentrations were greater on d 49 post-trucking, 50, and 51 for steers that received VC pre-transit (TRANS × day P = 0.01). Treatments did not affect bodyweight or average daily gain throughout the trial (P > 0.32). There were no effects of treatment on serum Bovine Viral Diarrhea Virus type 2 antibody titers on d 14 or 51 (P > 0.33). An injection of VC administered to early weaned beef steers at weaning or pre-transit increases plasma ascorbate concentrations but does not improve growth performance or antibody response to vaccination booster.

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 34-34
Author(s):  
Erin Deters ◽  
Stephanie L Hansen

Abstract This study sought to determine the effects of injectable vitamin C (VC), pre- or post-transit, on blood parameters and feedlot performance of beef steers. Seventy-two, Angus-cross steers were blocked by weight (356 ± 18 kg) and randomly assigned to intramuscular injection treatments (20 mL/steer): saline pre- and post-transit (CON), VC (Vet One; 250 mg sodium ascorbate/mL) pre-transit and saline post-transit (PRE), or saline pre-transit and VC post-transit (POST). Following pre-transit injections (d 0), steers were transported for ~18 h (1,675 km). Upon return (d 1), steers received post-transit injections and were sorted into pens (6 steers/pen) equipped with GrowSafe bunks. Steers were weighed on d 0, 1, 7, 30, 31, 56, and 57. Blood was collected on d 0, 1, 2, and 7. Data were analyzed as a randomized complete block design using ProcMixed of SAS (experimental unit = steer; 24 steers/treatment); treatment and block were fixed effects. Blood variables were analyzed as repeated measures. Injectable VC did not affect BW shrink due to transit (P = 0.28). Compared to CON-steers, PRE or POST-steers exhibited greater dry matter intake from d 31-57 and overall (d 1-57; P ≤ 0.02). Average daily gain was greatest for PRE-steers from d 7-31 and overall (P ≤ 0.05), resulting in PRE-steers being heaviest on d 30/31 (P = 0.03) and tending to be heaviest on d 56/57 (P = 0.07). Plasma ascorbate concentrations were decreased immediately post-transit for CON and POST-steers but increased for PRE-steers (treatment × day; P < 0.01). Plasma ferric reducing antioxidant potential and malondialdehyde were decreased post-transit while serum non-esterified fatty acid and haptoglobin were increased; all blood parameters returned to baseline by d 7 (day; P < 0.01). Timing of injectable VC administration appears to influence how cattle respond to transit as pre-transit administration improved subsequent performance of steers.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 121-121
Author(s):  
Aubree M Beenken ◽  
Erin L Deters ◽  
Stephanie L Hansen

Abstract This study examined the effects of injectable vitamin C (VC) before transport and duration of transit on feedlot performance, inflammation, and muscle fatigue in cattle. One hundred thirty-one, Angus-cross steers (409 ± 4 kg) were stratified by bodyweight (BW) to a 2 × 2 factorial of intramuscular injection (INJ; 20 mL/steer): VC (250 mg sodium ascorbate/mL) or saline (SAL) and road transit duration (DUR): 18 (18; 1,770 km) or 8 h (8; 727 km). On d 0, steers were weighed and received INJ of SAL or VC immediately before transport. Upon return (d 1), BW and blood were collected before steers returned to pens with GrowSafe bunks. Steers were weighed on d 0, 1, 7, 15, 30, 31, 54, and 55. Data were analyzed via ProcMixed of SAS (experimental unit = steer; 32–34 steers/treatment) with fixed effects of INJ, DUR, and the interaction. Blood was collected on d -5, 1, 2, and 3 (9 steers/treatment); blood parameters were analyzed as repeated measures. Average daily gain (ADG) and BW were greater on d 7 and 15 for SAL-18 compared to all other treatments (INJ × DUR, P < 0.01). Final BW, overall ADG, and gain:feed were greater for 18 than 8 (P < 0.01). Injection did not affect BW (P > 0.13) but VC decreased overall dry matter intake compared to SAL (P = 0.03). Steers transported for 18 h had greater serum lactate, haptoglobin, and non-esterified fatty acid concentrations on d 1 compared to steers transported for 8 h (DUR × DAY, P < 0.01). Day 1 plasma ascorbate concentrations were greater for VC and returned to baseline concentrations by d 2 (INJ × DAY, P < 0.01). In contrast to previous work, VC did not improve post-transit performance; however, longer transit duration increased indicators of muscle fatigue and inflammation.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 159-159
Author(s):  
Elizabeth M Messersmith ◽  
Angela Boyer ◽  
Dennis Nuzback ◽  
Stephanie L Hansen

Abstract A 126-d study utilized 72 Angus-cross steers (411 ± 16 kg) in a 3 × 2 factorial to examine the effects of Zn source and implant strategy on performance, carcass characteristics, and tissue Zn concentrations. All steers received 70 mg Zn/kg dry matter (DM) from ZnSO4 + 30 mg Zn/kg DM from one of three sources: zinc hydroxychloride (ZnHC), zinc glycinate (ZnG), or zinc sulfate (ZnS). Implant (IMP) strategies included: no implant (NoIMP) or Component TE-IS and Component TE-200 (IS/200) on d 0 and 57, respectively. Steers were blocked by weight into pens of 6 and fed a dry rolled corn-based diet via GrowSafe bunks. Data were analyzed using ProcMixed of SAS, with fixed effects of Zn, IMP, and the interaction. Liver and muscle collected on d -5, 14, 71, and 120 were analyzed for Zn concentration and data were analyzed as repeated measures (repeated effect = day). Steer was the experimental unit (n = 12/treatment). Final body weight and overall average daily gain tended to be decreased for ZnHC compared to ZnS, with ZnG intermediate within IS/200 (Zn × IMP; P ≤ 0.07). No interaction was observed for overall G:F or DM intake (P ≥ 0.41), but both were greater for implanted steers (P ≤ 0.01), while overall G:F was improved for ZnS compared to ZnHC and ZnG (P = 0.02). Carcass characteristics were unaffected by Zn × IMP or Zn source (P ≥ 0.12), but IS/200 improved HCW, DP, and REA (P ≤ 0.01). Implant increased liver Zn (P = 0.02) concentrations. Within IS/200 ZnG tended to have greater muscle Zn than ZnS while ZnHC was intermediate (Zn × IMP; P = 0.09), potentially indicating differences in availability of Zn source to growing muscle. These data suggest Zn source and implant influence performance and tissue Zn concentrations.


2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Dalton Humphrey ◽  
Spenser Becker ◽  
Jason Lee ◽  
Keith Haydon ◽  
Laura Greiner

Abstract Four hundred and eighty (PIC 337 X 1050, PIC Genus, Hendersonville, TN) pigs were used to evaluate a novel threonine source (ThrPro, CJ America Bio, Fort Dodge, IA) for nursery pigs from approximately 7 to 20 kg body weight (BW). After weaning, pigs were sorted by sex and fed a common diet for 1 wk. Upon completion of the first week, pigs were sorted into randomized complete blocks, equalized by weight, within 16 replications. Pigs were allocated to one of three dietary treatments: positive control (POS)—standard ileal digestible threonine-to-lysine ratio (SID; Thr:Lys) 0.60, negative control (NEG)—SID Thr:Lys ≤0.46, and alternative Thr source (TEST)—SID Thr:Lys 0.60. The alternative Thr source included fermentative biomass and was assumed to contain 75% Thr and a digestibility coefficient of 100% based on the manufacturer’s specifications. All other nutrients met or exceeded the NRC recommendations. Growth and intake data were analyzed as repeated measures with a compound symmetry covariance structure using the MIXED procedure in SAS 9.4 (SAS Institute Inc., Cary, NC) with pen as the experimental unit. Treatment, phase, the interaction between treatment and phase, and block were included as fixed effects in the model. Differences in total removals were tested using Fisher’s Exact Test of PROC FREQ. Results were considered significant at P ≤ 0.05 and considered a trend at P > 0.05 and P ≤ 0.10. During the first 14 d, pigs fed TEST had decreased gain-to-feed ratio (G:F; 0.77 vs. 0.80, P = 0.022) compared to POS and increased G:F (0.77 vs. 0.73, P < 0.001) compared to NEG. Over days 14–28, pigs fed TEST had similar G:F (0.71 vs. 0.70, P = 0.112) compared to POS and increased G:F (0.71 vs. 0.63, P < 0.001) compared to NEG. Overall (days 0–28), pigs fed TEST had similar average daily gain (ADG; 0.47 vs. 0.47 kg/d, P = 0.982) and G:F (0.76 vs. 0.74, P = 0.395) compared to POS and increased ADG (0.47 vs. 0.43 kg/d, P < 0.001) and G:F (0.76 vs. 0.67, P < 0.001) compared to NEG. The average daily feed intake was not significantly different across treatments for the entirety of the study. In conclusion, the replacement of crystalline L-Thr with a novel Thr source resulted in similar growth performance in nursery pigs from approximately 7 to 20 kg.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 166-167
Author(s):  
Andrea M Osorio ◽  
Kaue T Tonelli Nardi ◽  
Igor Gomes Fávero ◽  
Kaliu G Scaranto Silva ◽  
Kymberly D Coello ◽  
...  

Abstract The effects of a nutritional packet were evaluated on CH4 emissions and apparent total tract nutrient digestibility of feedlot beef steers. Thirty Angus-crossbred steers (BW = 542 ± 8.4 kg) were used in a randomized complete block design and allocated into pens equipped with SmartFeed (C-Lock; 15 steers/treatment). Steers were consuming a steam-flaked corn-based diet (88% concentrate DM basis) ad libitum for the last 65 d on feed, and received the following treatments: 1) control and 2) a nutritional packet [0.29% DM basis; live yeast (Saccharomyces cerevisiae; 8.7 Log CFU/g); Vitamin C (5.4 g/kg); Vitamin B1 (13.33 g/kg); NaCl (80 g/kg); KCl (80 g/kg)]. Methane emissions and apparent total tract nutrient digestibility were measured during 3 periods with 5-d of collections each. Gas emissions from steers were measured utilizing the SF6 tracer technique. Feed and fecal samples were collected once and twice (0700 h and 1600 h) daily, respectively, to determine digestibility of nutrients using iNDF as an internal marker. Steer was considered the experimental unit. Data were analyzed as repeated measures using the MIXED procedure of SAS with the fixed effects of treatment, period, and their interaction, and the random effect of block. No treatment × period interactions (P ≥ 0.125) were observed for DMI and any of the CH4 production variables (g/day, g/kg BW0.75, g/nutrient intake, and g/nutrient digested). Moreover, treatments did not affect digestibility of DM, OM, or ADF (P ≥ 0.300); however, digestibility of NDF was increased for treated cattle (P = 0.013), which resulted in a tendency (P = 0.098) to decrease CH4 production in g per kg NDF intake and decreased (P = 0.020) grams CH4 per kg NDF digested. The nutritional packet may be altering ruminal fermentation on intensively managed steers and improving fiber digestibility, which can have benefits on CH4 emission intensity.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 141-142
Author(s):  
Dathan Smerchek ◽  
Zachary K Smith

Abstract Two-hundred and forty English × Continental beef steers (initial BW=365 kg [SD 22.5]) were used in a randomized complete block design to evaluate the effects of bedding application during a 36 d feedlot receiving phase on growth performance and efficiency during winter. Steers were allotted to 30 pens (n = 8 steers/pen) at the Ruminant Nutrition Center in Brookings, SD and pens were assigned to 1 of 2 treatments: 1) No bedding applied (NO) or 2) 1.8 kg (as-is basis) of wheat straw bedding/steer/d (BED). Due to the logistics of acquiring, weighing, and timely feeding of steers, the first 9 pen replicates began on test 14 d prior (begin: January 15, 2019 and end: February 20, 2019) to the last 6 pen replicates (begin: January 29, 2019 and end: March 6, 2019). Pen was the experimental unit; an α of 0.05 determined significance. Daily ambient temperature (n = 50) averaged -14.7°C [SD 5.63] and wind-chill (n = 50) averaged -17.7°C [SD 6.40]. Initial BW (365 vs. 365 ± 0.5 kg) and dry matter intake (8.19 vs. 8.22 ± 0.047 kg) did not differ (P ≥ 0.57) between NO and BED. End BW was greater for BED (P = 0.01; 419 vs. 402 ± 1.09 kg) compared to NO. Steers from BED had increased average daily gain (P = 0.01) by 48.0% and gain:feed (P = 0.01) by 49.2% over NO. Using tabular ingredient energy values and observed steer performance shrunk 4%, relative adjustments to metabolic rate were calculated. Estimated metabolic rate was elevated (P = 0.01) for NO (0.146 vs. 0.104 ± 0.0032 Mcal/BW0.75, kg). Bedding improves feedlot receiving phase growth and efficiency in eastern South Dakota during the winter. Under the environmental conditions of this experiment, steers have a 40.4% increased metabolic rate when bedding is not used and steers in bedded pens had a 35.1% increase in metabolic rate compared to (0.077 Mcal/BW0.75, kg).


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 63-64
Author(s):  
Spenser Becker ◽  
Laura L Greiner

Abstract The objective of this study was to investigate the effects of dietary metabolizable energy level and the ratio of linoleic acid:linolenic acid (n6:n3) on the growth performance and inflammatory status of grow-finish pigs. A total of 240 growing pigs (BW = 41.5 ± 6.1 kg) were randomly assigned to either a high (3.55 Mcal/kg; HE) or low (3.29 Mcal/kg; LE) energy dietary treatment with a high (23:1) or low (12:1) n6:n3 in a 2 x 2 factorial design (n = 16). Diets were fed across three 28-day phases and were balanced for linoleic acid inclusion. Pigs were housed 4 pigs per pen. Blood samples were collected on weeks 1, 3, 6, and 12 of the study. Synovial fluid was collected from the hock joint on weeks 1 and 12 for inflammatory marker analysis. The pen was the experimental unit and data were analyzed as repeated measures using PROC MIXED (SAS 9.4) with energy, ratio, and the interaction as fixed effects. Compared to LE, pigs receiving HE had increased BW (P < 0.05) at d28 (73.0 vs. 69.9kg), d56 (105.0 vs. 100.7kg), and d84 (135.3 vs. 129.9kg). For the overall period, HE had increased ADG compared to LE (1.10 vs. 1.06kg; P < 0.05) and improved G:F (0.41 vs. 0.37; P < 0.05), while LE increased ADFI compared to HE (2.88 vs. 2.72kg; P < 0.05). There was no effect of ratio or energy ratio interaction for growth performance. C-reactive protein tended to be reduced in hock synovial fluid of pigs receiving LE (1854.3 vs. 2277.3ng/mL; P < 0.10). Across all treatments, CRP was reduced in the synovial fluid and plasma in week 12 compared to week 1 (P < 0.05). In conclusion, dietary n6:n3 ratio did not impact growth performance or CRP response regardless of energy level.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 128-129
Author(s):  
Dathan Smerchek ◽  
Zachary K Smith

Abstract The effect of bedding application on growth performance and estimated maintenance energy requirements during the feedlot receiving phase was evaluated in newly weaned beef steers (n = 162 Charolais-Red Angus cross steers; initial un-shrunk body weight [BW] = 278 ± 13.4 kg). Steers were housed in 18 concrete surface pens (n = 9 steers/pen) measuring 7.62 × 7.62 m at the Ruminant Nutrition Center in Brookings, SD. A corn silage based receiving diet was fed that contained approximately 1.74 Mcal/kg of NEm, approximately 1.12 Mcal/kg of NEg, and monensin sodium at 27.6 g/T. Pens were assigned to one of two treatments: 1) no bedding (NO), or 2) 1.0 kg (as-is basis) of wheat straw bedding/steer/d (BED). The study was conducted from October to December of 2019. Daily ambient temperature (n = 56) averaged -3.0°C [SD 5.5] and windchill averaged -5.1°C [SD 6.1] during the course of the study. Data were analyzed using the GLIMMIX procedure of SAS 9.4 (SAS Inst. Inc., Cary, NC) as a randomized complete block design with pen serving as the experimental unit. An α of 0.05 determined significance and tendencies were declared from 0.06 to 0.10. At study initiation, initial un-shrunk body weight did not differ (P = 0.69) between treatments. Bedding application did not influence (P ≥ 0.66) final body weight (shrunk 4%) or average daily gain. Dry matter intake tended to increase (P = 0.06) by 3.8% in NO compared to BED. Gain to feed was increased (P = 0.01) by 5.6% in BED compared to NO. Maintenance coefficient (MQ) was elevated (P = 0.03) 18.9% for NO compared to BED. These data indicate that bedding application improved feed efficiency and reduced estimated MQ in beef steers during the feedlot receiving phase.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 304-304
Author(s):  
Tylo J Kirkpatrick ◽  
Sierra L Pillmore ◽  
Kimberly Cooper ◽  
Travis Tennant ◽  
Ty Lawrence

Abstract This experiment was designed to study the effect of days on feed and an aggressive implant strategy on Jersey steer growth performance. Steers (n = 30; start of trial body weight (BW) 183 ± 43 kg) were randomly assigned to one of two treatments; negative control (CON) or implanted with Revalor 200 every 70 d (REV; d 0, d 70, d 140, d 210, d 280, d 350) for a total of 6 implants. Steers were weighed every 35 d and daily feed delivery was recorded daily. Data for dry matter intake (DMI) and gain to feed ratio (G:F) were analyzed via a mixed model; the fixed effects were day and treatment. Live growth BW and average daily gain (ADG) used day as the repeated measure and animal as the subject in a repeated measures analysis. Change in BW increased linearly (P < 0.01); treatments differed in BW from d 280 through d 350 (P < 0.01). Average daily gain decreased (P < 0.01) linearly and differed (P < 0.01) at d 70, d 140, d 280, and d 350, but not (P ≥ 0.10) at d 210 or d 420. Dry matter intake was greater (P < 0.05) for REV steers (7.6 kg/d) than CON (6.8 kg/d). Gain to feed ratio did not differ (P ≥ 0.78) between CON steers (0.13 kg/kg dry matter (DM)) and REV (0.14 kg/kg DM) steers, yet G:F differed (P < 0.01) amongst periods (d 70 = 0.21 kg/kg, d 140 = 0.16 kg/kg, d 210 = 0.15 kg/kg, d 280 = 0.13 kg/kg, d 350 = 0.08 kg/kg, d 420 = 0.08 kg/kg). Aggressively implanting Jersey steers improved growth performance by 9.6%, 13.2%, 11.3%, and 7.7% for BW, ADG, DMI, and G:F, respectively.


2021 ◽  
Vol 5 (3) ◽  
Author(s):  
A M Hilbrands ◽  
L J Johnston ◽  
R B Cox ◽  
F Forcella ◽  
R Gesch ◽  
...  

Abstract The objective of this experiment was to determine the dietary inclusion rate of camelina cake (CC) that would support the growth performance of growing-finishing pigs similar to that of a corn-soybean meal-based diet. Pigs (n = 192; BW = 35.2 kg; Duroc x (Yorkshire x Landrace)), balanced for sex and initial weight, were assigned to pens (8 pigs/pen) and pens were assigned randomly to one of four dietary treatments (6 pens/treatment). Treatments consisted of a non GMO corn-soybean meal control diet (CON), or CON containing 5% (5CC), 10% (10CC), or 15% (15CC) camelina cake. Feed disappearance on a pen basis and individual body weights of pigs were recorded every other week to calculate average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) on a pen basis. Prior to harvest, real-time ultrasonic measurements of back fat depth and loin eye area were collected on all live pigs. Pigs were harvested as a single group at about 23 weeks of age at a commercial abattoir. Data were analyzed using Proc Glimmix with dietary treatment as a fixed effect and pen serving as the experimental unit. Growth performance data collected over time were analyzed using repeated measures within the Proc Glimmix procedure. Overall, pigs fed CON exhibited similar ADG to those consuming 5CC and higher ADG than pigs consuming 10CC and 15CC diets (1.10 kg vs. 1.05 kg for 10CC and 1.02 kg for 15CC; P < 0.05 for both mean comparisons). Pigs fed CON consumed more feed than pigs fed any of the CC diets (ADFI = 2.66 kg for CON vs. 2.46 kg for 5CC, 2.46 kg for 10CC and 2.47 kg for 15CC; P < 0.05 for all). These differences resulted in heavier (P < 0.05) CON-fed pigs at marketing than 10CC or 15CC-fed pigs. There were no differences in any carcass traits analyzed. From these data, we conclude that feeding up to 5% CC in corn-soybean meal-based diets did not negatively influence growth performance, or carcass traits of growing-finishing pigs.


Sign in / Sign up

Export Citation Format

Share Document