PSV-5 Relationship between sire conception rate, sperm motility, sperm SERPINA5 relative concentration, and in vitro produced embryos in dairy bulls

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 310-310
Author(s):  
Saulo Menegatti Zoca ◽  
Julie Walker ◽  
Taylor Andrews ◽  
Adalaide C Kline ◽  
Jerica J Rich ◽  
...  

Abstract Sire conception rate (SCR) is a field measure of fertility among bulls, but it can be influenced by several factors (Sperm transport, sperm-egg binding, early embryo development, etc). The objective of this study was to evaluate the relationship between SCR, sperm motility, SERPINA5 concentrations, and in vitro embryo development. Measurements were performed in 19 bulls with SCR values ranging from -7.7 to 4.45. For each bull, an aliquot of frozen-thawed semen was used for analyses of total (TMOT) and progressive (PROG) motility. Remaining semen was fixed with 2% formaldehyde, and concentration of SERPINA5 was determined by immunolocalization (antibody SERPINA5/Dylight405; PA5-79976-Invitrogen / ab201798-Abcam). Mean fluorescence intensity was determined in ~200 sperm heads/bull. Approximately 149 oocytes/bull were fertilized in vitro for embryo development analysis (cleavage and blastocyst rates). Statistical procedures were performed in SAS (9.4) using the procedures CORR for correlations (SCR, TMOT, PROG, SERPINA5, cleavage and blastocyst) and GLIMMIX for comparison of “field-fertility” (SCR divided in HIGH or LOW) and “field-embryo-fertility” (LOW-SCR sires were divided based on blastocyst rate (HIGH or LOW) resulting in two classifications; LOW-HIGH≥31% and LOW-LOW≤26%, respectively). There were positive correlations (P < 0.05) between cleavage-blastocyst (r=0.50), SERPINA5-cleavage (r=0.48), and TMOT-PROG (r=0.76). Sire SCR was not associated with SERPINA5, TMOT, PROG, cleavage and blastocyst rate (P > 0.52). Among LOW-SCR sires, LOW-LOW sires (-4.83±0.60) tended to have a better SCR score than LOW-HIGH (-6.18±0.42) sires (P = 0.08), but there were no differences (P > 0.43) between LOW-HIGH, LOW-LOW, and HIGH sires for SERPINA5, TMOT, PROG, and cleavage. In conclusion, some LOW SCR sires have good embryo development indicating a different mechanism for their low SCR; however, these differences in SCR could not be explained by TMOT, PROG, SERPINA5, cleavage and blastocyst. There were, however, positive correlations between cleavage-blastocyst rate, and SERPINA5-cleavage rate.

2015 ◽  
Vol 27 (1) ◽  
pp. 154
Author(s):  
E. Corbin ◽  
A. Cordova ◽  
J. Grosbois ◽  
P. Mermillod

Previous experiments demonstrated that co-culture of bovine embryos with bovine oviducal epithelial cells (BOEC) improved blastocyst rate and quality (Cordova et al. 2014). However, the use of primary cell support for improving embryo development in vitro may introduce a higher variability of the results between different BOEC batches used, as well as sanitary risks. The use of well-controlled large batches of frozen BOEC may help to solve these problems. Therefore, the aim of the present study was to characterise the survival and functionality of frozen-thawed BOEC. Bovine oviducts attached to ovaries showing recent ovulation were collected at a local slaughterhouse during 4 replicates (3 oviducts per replicate). Epithelial cells were expelled by gentle squeezing and washed 3 times. Half of the cell pellet was diluted 100-fold in culture medium (TCM199 + 10% FCS) for culture of fresh cells. The other half was diluted 10-fold in cell freezing medium (TCM199 + 20% FCS + 10% dimethyl sulfoxide), allowed to equilibrate in this medium for 10 min, and frozen at –80°C in a container filled with isopropyl alcohol. After 4 h, the tubes were transferred into LN for at least 1 h. The tubes were then thawed (5 min in 37°C water bath), diluted 1 : 1 in cell culture medium, and centrifuged for 10 min at 100 × g. The pellet was then diluted 100× in cell culture medium. Fresh or frozen-thawed cells were seeded in 4-well NUNC plates for 7 days at 38.8°C in a humidified atmosphere with 5% CO2 in air. The medium was renewed every 48 h, and the viability of cells was assessed by calcein-AM and ethidium homodimer labelling. After 7 days of culture, the medium was replaced by SOF medium + 5% FCS, and bovine in vitro-produced zygotes were added the day after and co-cultured for 8 days at 38.8°C in a humidified atmosphere with 5% CO2 in air to evaluate embryo development. Half of the medium was renewed every 48 h. Frozen-thawed cells showed the same viability than fresh ones at Days 0 and 7 of culture and reached confluence at the same time (Day 7). Development results are shown in Table 1. Frozen and fresh cells support early embryo development at the same rate. In conclusion, the present study showed that BOEC frozen on the day of collection are equivalent to fresh BOEC in regards to their survival and proliferation and their ability to support early embryo development. At collection, the cells may face stresses that are just as considerable as freezing/thawing (temperature shock, scrapping, change of environment). This may explain why they are not affected by freezing than at collection. The differentiation status of these cells is now under analysis by immunocytochemistry. Table 1.Cleavage rate and blastocyst rate in 3 different types of culture systems


Reproduction ◽  
2003 ◽  
pp. 543-553 ◽  
Author(s):  
JM Lozano ◽  
P Lonergan ◽  
MP Boland ◽  
D O'Callaghan

Two experiments were carried out to study the effect of nutrition on embryo development in two periods in superovulated ewes (Expt 1) and on oocyte developmental capacity during the late follicular phase (Expt 2). In Expt 1, a lower superovulation response in terms of animals ovulating (P < 0.05), ovulation rate per ewe ovulating (P = 0.1) and number of good quality embryos per animal treated (P < 0.07) was noted in ewes fed an ad libitum diet compared with ewes offered control (1.5 times the daily maintenance energy requirements, 1.5 x M) or low energy (0.5 x M) diets. Nutrition also modified the morphological and functional quality of the oocytes and embryos recovered. Thus, 92% of day 4 embryos recovered from ewes offered the control diet were classified as good embryos, compared with 70 and 82% of those recovered from ewes offered the ad libitum and low diets, respectively (P < 0.05). Ewes offered the ad libitum diet had a greater percentage of poorly developed embryos compared with ewes offered the control or low diets (P < 0.05). Ewes fed the low diet tended to have more non-fertilized oocytes than ewes offered the control diet (P = 0.09). Diet of recipient ewes to which good quality embryos were transferred on day 4 did not affect embryo quality, when assessed 12 days later (day 16 of pregnancy). However, recipient diet affected prostaglandin F(2alpha) (PGF(2alpha)) production in vitro, and uterine tissue that originated from recipient ewes on the low diet secreted more PGF(2alpha) relative to uterine tissue that originated from recipients on the control diet (P < 0.05). In Expt 2, fewer total (P < 0.05) and good quality (P < 0.01) oocytes and a lower percentage of good quality oocytes (P < 0.01) were obtained from superovulated ewes offered the ad libitum diet compared with ewes offered the low diet. In addition, cleavage rate tended to be higher (51 versus 35%, P = 0.09) in ewes offered the low diet compared with ewes offered the ad libitum diet. In conclusion, changes in diet can affect the quality of the oocyte and embryo in superovulated sheep. A lower superovulation response and a decrease in the quality of oocytes and embryos indicate that ad libitum diets are highly detrimental for superovulatory programmes when compared with low and control diets. In addition, the results from the present study indicate that a low energy diet during early embryo development increased the uterine production in vitro of PGF(2alpha) which could lead to a poor uterine environment thereby compromising the development of the embryo.


2009 ◽  
Vol 21 (1) ◽  
pp. 156
Author(s):  
E. Dovolou ◽  
M. Clemente ◽  
G. S. Amiridis ◽  
I. Messinis ◽  
A. Kalitsaris ◽  
...  

We have previously shown that follicular and oviductal fluid provide greater total protection against lipid peroxidation than the respective media used for the in vitro embryo production. Reactive oxygen species (ROS) production has been implicated as a major cause for the reduced in vitro bovine embryo production; it is believed that they participate in meiotic arrest of oocytes, embryonic block and cell death. The aim of this study was to determine whether guaiazulene (G), an exogenous antioxidant, added in the post fertilization culture medium would affect the early embryo development and the quality of the produced blastocysts in terms of mRNA expression of several important genes. In a previous study we had shown that media modified with 0.01 mm of G provided the same antioxidant protection as the respective in vivo environments (i.e. the follicular and the oviductal fluid). Bovine cumulus–oocyte complexes (COC) were aspirated from ovaries derived from slaughtered cows and matured in groups of 50 in 500 μL in TCM199 with 10% fetal calf serum and 10 ng mL–1 Epidermal Growth factor at 39°C in an atmosphere of 5% CO2 in air and maximum humidity. Twenty-four hours later matured oocytes were inseminated with frozen/thawed bull semen and co-incubated in the same conditions as maturation. Presumptive zygotes were divided into 4 groups and cultured in groups of 25 in 25 μL of SOF with 5% FCS (Control–, n = 355), supplemented with 0.01 mm of G (n = 344) or 0.1 mm of G (n = 345) or 0.05% DMSO – the G diluent–(Control+, n = 347) at 39°C in an atmosphere of 5% CO2, 5% O2 and maximum humidity. Blastocyst yield was recorded on Days 6, 7, 8 and 9; Day 7 blastocysts from each group were snap frozen and stored at –80°C for mRNA extraction. Quantification of transcripts for aldose reductase mRNA (AKRIBI), prostaglandin G/H synthase-2 (PGHS-2, COX-2), glyceraldehyde 3-phosphate dehydrogenase (GADPH), facilitated glucose/fructose transporter, member 5 (GLUT-5) genes related to metabolism, glutathione peroxidase 1 (GPX1), glucose-6-phosphate dehydrogenase (G6PD) antioxidant enzymes and placenta-specific 8 (PLAC8) related to implantation was carried out by real-time quantitative RT-PCR. Data for embryo development and on transcript abundance were analyzed by chi square and ANOVA, respectively. Cleavage rate tended to be higher in 0.01 mm group than in Control– (77.87% v. 71.41%, P = 0.07). Barring that, no other differences were detected in cleavage rate (Control+: 71.32%; 0.1 mm: 72.75%) or in the overall blastocyst yield on Day 9 (Control–: 25.50%; Control+: 26.71%; 0.1 mm: 25.75%; 0.01 mm: 29.58%). The relative abundance of genes studied varied among groups, but these differences were not significant. We infer that under the current culture conditions, G as an antioxidant has no serious direct effect on early embryo development or on embryo quality at least on the mRNA transcripts studied. Further studies using the same antioxidant in different atmospheric conditions are planed. ED and GSA were sponsored by COST (FAO702) and OECD fellowships, respectively.


1999 ◽  
Vol 1999 ◽  
pp. 2-2 ◽  
Author(s):  
M. Kuran ◽  
M.E. Staines ◽  
G.J. McCallum ◽  
A.G. Onal ◽  
T.G. McEvoy

Ovine embryos produced in synthetic oviduct fluid (SOF) medium or in coculture with granulosa cell monolayers supplemented with low (A; 120 μmol/l) and high (B; 190 μmol/l) ammonia-producing steer sera caused different degrees of fetal oversize (Carolan et al., 1998). The objective of the present study was to determine whether the effects on fetal growth induced by these sera were associated with alterations in early embryo development.A total of 911 bovine oocytes, used in 8 replicates to test the effect of three culture treatments on embryo development, were matured and fertilized in vitro (IVF= Day 0). Presumptive zygotes were allocated on Day 1 to culture in SOF supplemented with 10% v/v steer serum (SOF+A, n=308; SOF+B, n=302) or with amino acids plus 0.4% w/v crystalline BSA (SOFaaBSA, n=301). All cultures were in 20 μl droplets under oil (38.5°C; 5% CO2, 5% O2; 4 zygotes per drop) and droplets were renewed every 48 h. Cleavage rate was recorded on Day 3. On Days 7 and 8, blastocyst yields, grade 1 and 2 blastocysts, their cell numbers (by staining with Hoechst 33342) and their stage and diameter were determined.


2017 ◽  
Vol 29 (1) ◽  
pp. 183 ◽  
Author(s):  
T. A. Patrocínio ◽  
C. A. C. Fernandes ◽  
L. S. Amorim ◽  
J. R. Ribeiro ◽  
G. C. Macedo ◽  
...  

Oxidative stress is one of the main effects of in vitro culture. Generation of reactive oxygen species (ROS) by embryos can be enhanced by the sub-optimal in vitro culture conditions and are associated with a delay in embryonic development. However, supplementation of culture medium with antioxidant agents can minimize the effects of ROS (Guérin et al. 2001 Hum. Reprod. Update 7, 175–189). Resveratrol is an example of a potent antioxidant, and modifications in its structure can improve its biological activity. This study evaluated the effect of AR33 (formula with patent pending), an analogue of resveratrol with high antioxidant activity, on embryo development. Bovine cumulus-oocyte complexes recovered from ovaries collected at the slaughterhouse were in vitro matured for 24 h and oocytes were in vitro fertilized for 20 h, both at 38.8°C under 5% CO2 in air and high humidity. Partially denuded presumptive zygotes were randomly distributed in 4 treatments (with 6 replicates): 0 µM (control, n = 347), 0.1 µM (n = 337), 0.5 µM (n = 277), and 2.5 µM (n = 343) of AR33. The base medium was SOFaa supplemented with 2.5% FCS and incubation conditions were 38.8°C under 5% CO2 in air and high humidity. Half of culture medium was renewed (feeding) at Day 3 and 5 post-fertilization. Cleavage was evaluated at Day 3 and blastocyst rates at Day 7 and 8 post-fertilization. Data were analysed by logistic regression considering the significance level of P < 0.05. Values are shown as mean ± SEM. Cleavage rate was higher (P < 0.05) for 2.5 µM (69.0 ± 4.4%) than for 0, 0.1, and 0.5 µM AR33 (62.1 ± 2.0%, 60.7 ± 5.9%, and 56.7 ± 5.8%, respectively). At Day 7, the blastocyst rate was similar (P > 0.05) among 0.1, 0.5, and 2.5 µM (18.1 ± 5.4%, 17.5 ± 2.9%, and 19.4 ± 3.3%, respectively) and all of them were higher (P < 0.05) than 0 µM AR33 (12.4 ± 2.5%). At Day 8, there was again no difference (P > 0.05) among 0.1, 0.5, and 2.5 µM AR33 (21.0 ± 5.0%, 18.4 ± 2.1%, and 24.6 ± 3.3%, respectively) but only 0.1 and 2.5 µM showed higher (P < 0.05) blastocyst rate than 0 µM AR33 (15.2 ± 2.5%). In conclusion, the synthetic analogue of resveratrol tested in this study can improve bovine embryo development in culture medium supplemented with 2.5% FCS under 5% CO2 in air. A concentration of 2.5 µM AR33 can be a choice for further studies. This study was supported by Fapemig, CAPES, and CNPq.


Reproduction ◽  
2019 ◽  
Vol 158 (5) ◽  
pp. 453-463
Author(s):  
Joao Alveiro Alvarado Rincón ◽  
Patricia Carvalho Gindri ◽  
Bruna Mion ◽  
Ferronato Giuliana de Ávila ◽  
Antônio Amaral Barbosa ◽  
...  

The aim of this study was to evaluate the effect of exposing bovine oocytes to lipopolysaccharides (LPS) in vivo and in vitro on early embryo development. In experiment 1, cumulus oocyte complexes (COCs, n = 700/group) were challenged with 0, 0.1, 1.0 or 5.0 μg/mL of LPS during in vitro maturation (IVM). Later, in vitro fertilization (IVF) and in vitro culture (IVC) were performed. In experiment 2, COCs (n = 200/group) matured and in vitro fertilized without LPS were subjected to IVC with the same doses of LPS from experiment 1. In experiment 3, heifers received two injections of saline solution (n = 8) or 0.5 μg/kg of LPS (n = 8) 24 h apart, and 3 days later, COCs were recovered and submitted to IVM, IVF, and IVC. In experiments 1 and 3, the expression of TLR4, TNF, AREG and EREG genes in cumulus cells was evaluated. Exposure to 1 and 5 μg/mL of LPS during IVM decreased nuclear maturation (39.4 and 39.6%, respectively) compared with control (63.6%, P < 0.05). Despite that, no effect on cleavage and blastocyst rates were observed. Exposure to LPS during IVC did not affect embryonic development. In vivo exposure to LPS decreased the in vitro cleavage rate (54.3 vs 70.2%, P = 0.032), but cleaved embryos developed normally. Number of cells per embryo and gene expression were not affected by the LPS challenge in any experiment. In conclusion, although in vitro exposure to LPS did not affect early embryo development, in vivo LPS exposure reduced cleavage rate.


2021 ◽  
Vol 33 (2) ◽  
pp. 138
Author(s):  
K. Clark ◽  
J. N. Drum ◽  
J. A. Rizo ◽  
M. S. Ortega

Currently, the only measure of sire fertility in the bovine is sire conception rate (SCR), which is determined by Day 70 pregnancy diagnosis and not reflective of early embryo development. Therefore, this study aimed to establish the relationship between SCR and early embryo development. In the first experiment, 65 sires of negative (&lt;−1, n=25), average (−1 to 1, n=19), and high (&gt; +1, n=21) SCR were characterised for their ability to produce embryos using an invitro embryo production (IVP) system. For each sire, 100 cumulus–oocyte complexes (COCs) were used. COCs were matured for 22h, fertilized by co-incubation with sperm selected from density gradient centrifugation for 18h, and then placed in culture medium. A sire of known IVP performance was used as a control in each run. Cleavage and blastocyst rates (BL) were measured on Days 3 and 8 post-insemination, respectively. Photographs were taken on Days 3, 5, and 8 to identify arrest stages of non-blastocyst embryos. Sires were ranked based on their blastocyst rate and grouped into quartiles for statistical analysis. Differences in BL were determined by ANOVA using sire, IVP run, and a sire×IVP run interaction. In addition, the correlation between SCR and BL was determined. All data were analysed using SAS software version 9.4 (SAS Institute Inc.). Mean BL between each quartile was significant (P&lt;0.05), with rates ranging from 8 to 22% and 32 to 62% for the lowest and highest quartile, respectively. There was no correlation (P=0.90) between SCR and BL. Arrest stage was measured by subtracting the number of Day-8 blastocysts from, first, embryos that were morulas on Day 5, and then embryos that were 8- to 16-cell stage embryos on Day 5. This method is based on the assumption that embryos closer to the blastocyst stage on Day 5 are more likely to contribute to the Day 8 blastocyst population. The most frequent arrest stage was the 4- to 6-cell stage (39/52 sires). It has been shown that decreased rates of autophagy are associated with embryonic arrest at the 4- to 8-cell stage in humans, leading us to investigate this mechanism in the second experiment. Select high (n=3) and low (n=4) performing sires identified in experiment 1 were used to generate 4- to 6-cell embryos, and autophagy rates were measured using live immunofluorescence with CYTO-ID autophagy dye (n=20 embryos/sire). The mean fluorescent intensity of each embryo was divided by the number of cells within the embryo. Differences in autophagy between high and low sires were determined by ANOVA using SAS. Interestingly, low-performing sires had a significantly higher autophagy rates than high-performing sires (77.8±3.1 vs. 50.0±3.5). This could indicate that embryos produced with low-performing sires had higher levels of stress than their counterparts. In summary, the effect of sire on embryonic development seems to be independent of the SCR classification. The most common arrest stage observed is the 4- to 6-cell stage, right before embryonic genome activation. Further research is required to elucidate the mechanisms by which sires influence pre-implantation development. This research was supported by USDA-NIFA AFRI Competitive Grant No. 2019-67015-28998.


2016 ◽  
Vol 28 (2) ◽  
pp. 211
Author(s):  
G. Singina ◽  
I. Lebedeva ◽  
E. Shedova ◽  
N. Zinovieva

In vitro maturation (IVM) and IVF of domestic animal oocytes is widely used for commercial and research purposes. The oocyte quality and capacity for further development acquired during in vitro maturation and reduced during the subsequent aging are the main limitative factors affecting the embryo production (Miao et al. 2009 Hum. Reprod. Update 15, 573–585). Our objective was to evaluate effects of prolactin (PRL) and dithiothreitol (DTT) on apoptosis and the embryo development of bovine oocytes matured in vitro using 2 different systems. A total of 1437 slaughterhouse-derived cumulus-oocyte complexes (COC) were matured for 24 h in TCM-199 supplemented with 10% FCS, 0.2 mM sodium pyruvate, 10 μg mL–1 porcine FSH, and 5 μg mL–1 ovine LH. In system 1, 251 COC from a total of IVM oocytes were transferred to the aging medium (TCM-199 supplemented with 10% FCS) and cultured for 24 h in the absence (control) and the presence of either PRL (20 and 50 ng mL–1) or DTT (2.5, 5, and 10 μM). At the end of culture, oocyte apoptosis was detected using the TUNEL method. In system 2, another part of IVM oocytes (1186 COC) was co-incubated for 18 h with sperm in Fert-TALP medium modified by addition of 10 μg mL–1 heparin, PHE (20 μM penicillamine, 10 μM hypotaurine, 1 μM epinephrine), and 0.1% modified Eagle’s medium (MEM) nonessential amino acids. In this case, PRL and DTT (at the above listed concentrations) were added directly to the fertilization medium. After IVF, oocytes were cultured in CR1aa medium for assessment of the cleavage and blastocyst rates on Days 2 and 8, respectively. The nuclear status of blastocysts was evaluated by the cytogenetic method. The data from 3–7 replicates were analysed by ANOVA. Culture of matured COC in the aging medium (system 1) increased the rate of apoptotic oocytes from 8.1 ± 4.7% (0 h) to 48.6 ± 5.8% (24 h) (P < 0.01). This rate was reduced (P < 0.05) up to 22.5 ± 3.1% and 17.8 ± 5.1% in the presence of PRL (20 and 50 ng mL–1) and up to 15.0 ± 6.9% and 19.5 ± 3.7% in the presence of DTT (2.5 and 5 μM). The direct addition of PRL at a concentration of 20 ng mL–1 to the IVF medium raised the blastocyst rate from 21.6 ± 2.2% to 29.8 ± 2.4% (P < 0.05) but did not affect the cleavage rate (72.1 ± 2.2% v. 74.3 ± 2.1%). By contrast, 50 ng mL–1 PRL did not increase the yield of blastocysts and decreased the cleavage rate (from 74.3 ± 2.1% to 62.9 ± 2.4%, P < 0.05). When added to the IVF medium, DTT raised the blastocyst rate only at a concentration of 2.5 μM (P < 0.05). No effects of PRL and DTT on the number of cells in embryos at the blastocyst stage were found. Our findings indicated that PRL and DTT supplements during in vitro fertilization of bovine oocytes may improve their capacity for the subsequent embryo development. This effect was probably due to the inhibitory influence of PRL and DTT on apoptosis of matured oocytes. The study was supported by the Federal Agency for Scientific Organizations and RFBR (project No. 14–48–03681).


2018 ◽  
Vol 30 (1) ◽  
pp. 175
Author(s):  
G. A. Kim ◽  
J.-X. Jin ◽  
S. Lee ◽  
A. Taweechaipaisankul ◽  
B. C. Lee

Melatonin and its metabolites are powerful antioxidants and free radical scavengers. Because porcine embryos are vulnerable to oxidative stress in vitro, the addition of various protective chemicals to the culture medium, including melatonin, has been explored. The aim of this study was to investigate the effect of melatonin on in vitro developmental competence of porcine parthenogenetically activated (PA) embryos. Immature cumulus–oocyte complexes (COC) were collected and cultured in medium comprising TCM-199 supplemented with 10 ng mL−1 epidermal growth factor, 0.57 mM cysteine, 0.91 mM sodium pyruvate, 5 μL mL−1 insulin, transferrin selenium solution 100×, 10% porcine follicular fluid, 10 IU mL−1 eCG, and 10 IU mL−1 hCG for 44 h. Then, COC were denuded and PA with electrical stimulation, and PA embryos were cultured in porcine zygote medium 5 (PZM-5) supplemented with melatonin at increased concentrations (10−9, 10−7, 10−5 M) at 39°C in a humidified atmosphere of 5% O2, 5% CO2, and 90% N2 for 7 days. Subsequent embryo development, including cleavage rate, blastocyst rate, and blastocyst cell numbers, was compared between groups (mean no. of embryos; control, 27.14; 10−9 M, 28.86; 10−7 M, 27.71; 10−5 M, 26.43). The experiments were repeated 7 times for each treatment group. Statistical analyses of all data were performed using one-way ANOVA with Dunn’s multiple comparison test. Results are expressed as the mean ± SEM and all differences were considered significant at P < 0.05. No apparent effect on cleavage rate of melatonin treatment of various concentrations was noted. Blastocyst cell number did not show any significant difference between groups. However, the potential of PA oocytes to develop into blastocysts was significantly higher in the group supplemented with 10−9 M melatonin compared with the control group (35.44 ± 3.84 v. 24.71 ± 1.59) and other melatonin treated groups (10−5 M, 21.35 ± 2.82; 10−7 M, 24.01 ± 2.31; P < 0.05). These indicated that treatment with 10−9 M melatonin in embryo culture might reduce the oxidative stress properly compared with other concentrations, which results in improvement of blastocyst rate formation. In conclusion, treatment with 10−9 M melatonin positively promoted the blastocyst formation rate of porcine PA embryos with no beneficial effects on their blastocyst cell numbers or cleavage rate. This study was supported by the National Research Foundation (#2015R1C1A2A01054373; 2016M3A9B6903410), Research Institute for Veterinary Science and the BK21 PLUS Program.


Zygote ◽  
2005 ◽  
Vol 13 (2) ◽  
pp. 97-101 ◽  
Author(s):  
M. Machatkova ◽  
J. Horakova ◽  
R. Rybar ◽  
K. Hanzalova ◽  
J. Rubes

The present experiments were designed to study the effects of Robertsonian translocations on the efficiency and kinetics of in vitro fertilization and early and advanced embryo development. Spermatozoa from bulls with rob(16;20), rob(1;29) and normal karyotype (A, B and C, respectively) were used. Oocytes were matured, fertilized and cultured by the standard protocol described previously. Twenty-four hours after fertilization, adequate numbers of oocytes were fixed, stained and examined. The development of embryos was evaluated on days 2 (D2), 7 (D7) and 8 (D8) after fertilization. The rate of normally fertilized oocytes was significantly lower (p≤0.01) for bull A than for bulls B and C. However, no significant differences in the kinetics of fertilization were found between bulls A, B and C. The D2 cleavage rate of embryos was significantly lower (p≤0.01) for bull A than for bulls B and C. Both D7 and D8 blastocyst rates for bull A or bull B were significantly lower (p≤0.01 or p≤0.01) than those for bull C. The percentages of both D7 advanced blastocysts and D8 expanded blastocysts were significantly lower (p≤0.01) for bulls A and B than for bull C. In conclusion, for rob(16;20), the efficiency of fertilization was strongly reduced; it resulted in low early and advanced embryo development. On the other hand, for the rob(1;29), neither fertilization nor early embryo development were affected and only advanced embryo development was decreased. But for both translocations, blastocyst formation was significantly delayed.


Sign in / Sign up

Export Citation Format

Share Document