Establishment of a bovine rumen epithelial cell line

Author(s):  
Xu Ji ◽  
Huili Tong ◽  
Robert Settlage ◽  
Wen Yao ◽  
Honglin Jiang

Abstract Rumen epithelium plays an essential role in absorption, transport, and metabolism of short-chain fatty acids, the main products of rumen fermentation, and in preventing microbes and other potentially harmful rumen contents from entering the systemic circulation. The objective of this study was to generate an immortal rumen epithelial cell line that can be used as a convenient model of rumen epithelial cells in vitro. We isolated primary rumen epithelial cells from a steer through trypsin digestion and transduced them with lentiviruses expressing the Simian Virus (SV) 40 T antigen. We cloned the transduced cells by limiting dilution. Western blotting analysis confirmed the expression of the SV40 T antigen in two single-cell clones. Cells from one clone, named bovine rumen epithelial clone 1 (BREC1), displayed a flat and squamous morphology in culture. RNA sequencing revealed that BREC1 cells expressed many markers of epithelial cells, including keratins, the epidermal growth factor receptor, and the short-chain fatty acid transporters monocarboxylic acid transporter 1 (MCT-1) and MCT-4. RNA sequencing revealed that BREC1 cells expressed key enzymes such as 3-hydroxymethyl-3-methylglutaryl-CoA lyase and 3-hydroxy-3-methylglutaryl-CoA synthase 1 involved in ketogenesis, a unique function of rumen epithelial cells. RNA sequencing also revealed the expression of genes encoding tight junctions, desmosomes, anchoring junctions, and polarized plasma membranes, structures typical of epithelial cells, in BREC1 cells. Cell proliferation assays indicated that BREC1 cells were similar to primary rumen epithelial cells in response to insulin-like growth factor 1, insulin, and butyrate. In conclusion, BREC1 is not only a convenient but an appropriate model for studying the factors and mechanisms that control proliferation, apoptosis, differentiation, nutrient transport, metabolism, and barrier function in rumen epithelium.

1989 ◽  
Vol 92 (2) ◽  
pp. 241-249
Author(s):  
C.M. Lee ◽  
J. Dessi

An ion-transporting human epithelial cell line, NCL-SG3, has been established by simian virus 40 (SV40) infection of primary cultures from eccrine sweat glands. The line has been passaged 38 times (over 100 population doublings), has an aneuploid karyotype but has not undergone any ‘crisis’. The cells have retained epithelial morphology and expression of cytokeratin, the intermediate filament characteristic of epithelial cells. Approximately 85% of the population shows at least weak co-expression of vimentin, an intermediate filament associated with mesenchymal and some other non-epithelial cell types in vivo. In addition, SV40 large T-antigen is present, in a predominantly nuclear localization. Electrically resistant cell sheets are formed on dialysis tubing and cellulose-ester permeable supports. Electrogenic ion transport can be stimulated by the beta-adrenergic agonist isoproterenol (10(−6) M) and by lysylbradykinin (10(−7) M) but not by the cholinergic agonist carbachol at 10(−6) M).


Author(s):  
Rino P. Donato ◽  
Adaweyah El-Merhibi ◽  
Batjargal Gundsambuu ◽  
Kai Yan Mak ◽  
Emma R. Formosa ◽  
...  

1986 ◽  
Vol 86 (1) ◽  
pp. 95-107
Author(s):  
M. Paye ◽  
C.M. Lapiere

PER cells, a transformed pulmonary epithelial cell line that adhered to a large extent to a fibronectin substratum, were found to be attachment-deficient to collagen I. Although fibronectin can bind to collagen I monomers and polymers, the addition of exogenous fibronectin in the attachment medium induced the adhesion of these cells to collagen I polymers but not to monomers. By adding the transglutaminase of blood coagulation, FXIII, in the presence of fibronectin, the attachment of PER cells to collagen I monomers could be recovered while the minimal concentration of fibronectin needed to promote their adhesion to polymers was lowered. These studies indicate that FXIII enhances the fibronectin-mediated attachment of PER cells to collagen I.


1989 ◽  
Vol 94 (2) ◽  
pp. 327-332
Author(s):  
E.J. Hughson ◽  
D.F. Cutler ◽  
C.R. Hopkins

The immunoglobulin kappa light chain is constitutively secreted in non-polarised cells. It is therefore unlikely to display any of the signals thought to be required for the selective delivery of proteins to the apical or basolateral borders of polarised epithelial cells. We have transfected the gene for the kappa light chain into a polarised epithelial cell line (Caco-2) and shown that it is secreted predominantly from the basolateral surface. Metabolically labelled endogenous secretory products show the same polarity and we conclude, therefore, that in Caco-2 cells there is a major intracellular trafficking route to the basolateral border that requires no sorting signal.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 867
Author(s):  
Olga Povolyaeva ◽  
Yaroslava Chalenko ◽  
Egor Kalinin ◽  
Olga Kolbasova ◽  
Elena Pivova ◽  
...  

L. monocytogenes is a widespread facultative intracellular pathogen. The range of natural hosts that supporting L. monocytogenes persistence in the environment has not been fully established yet. In this study, we were interested in the potential of L. monocytogenes to infect cells of bats, which are being increasingly recognized as a reservoir for microorganisms that are pathogenic to humans and domestic animals. A stable epithelial cell line was developed from the kidneys of Pipistrellus nathusii, a small bat widely distributed across Europe. The wild-type L. monocytogenes strain EGDe infected this cell line with an invasion efficiency of 0.0078 ± 0.0009%. Once it entered bat cells, L. monocytogenes doubled within about 70 min. When L. monocytogenes lacked either of the major invasion factors, InlA and InlB, invasion efficiency decreased by a factor of 10 and 25 respectively (p < 0.000001). The obtained results suggest that bat epithelial cells are susceptible to L. monocytogenes infection and that L. monocytogenes invasion of bat cells depends on the major invasion factors InlA and InlB. These results constitute the first report on in vitro studies of L. monocytogenes infection in bats.


1992 ◽  
Vol 28 (7-8) ◽  
pp. 461-464 ◽  
Author(s):  
Joan H. Schiller ◽  
Chinghai Kao ◽  
Gerard Bittner ◽  
Chuck Harris ◽  
Terry D. Oberley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document