scholarly journals 45 Opportunity with functional role of supplemental amino acids

2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 24-24
Author(s):  
Yanbin Shen ◽  
Sung Woo Kim

Abstract The technological advancement in production of crystalline amino acids has driven the cost of crystalline amino acids down significantly and facilitated the wide use of crystalline amino acids in food animal production. The primary reason of use of crystalline amino acids in am animal’s diet is to provide dietary essential nutrients for protein synthesis and to balance the diet and reduce dietary cost. Extensive researches with amino acids have greatly enabled such use. As a result, most swine diets today are formulated with 3 or 4 supplemental amino acids. However, the economical return on including beyond 4 supplemental amino acids becomes low and thus discourages the use of more than 4 supplemental amino acids for dietary saving purpose. The use of the functional role of amino acids might bear the new opportunity for amino acids. Tryptophan has unique physiological functions involving synthesize serotonin in the body. Increasing tryptophan intake is shown to elevate serotonin synthesis in the brain of pigs and reduce stress and improve performance of pigs under social stress. Research shows that methionine is used as a precursor of glutathione to protect intestinal mucosa from oxidative damages during weaning stress. Arginine, glutamine, and glutamate are shown to have functions in cell proliferation, potentially improving intestinal and immune function of nursery pigs and preventing loss of lean body mass in the sow. Leucine is a ketogenic amino acid. The carbon skeleton of leucine is converted to acetylCoA, which could be used for fatty acid synthesis in muscle tissue. Research showed that intramuscular fat was increased by feeding high dietary leucine levels. Overall, the different functions of individual AA beyond their roles as the building blocks for proteins give additional opportunities of amino acid application in animal production.

1998 ◽  
Vol 141 (1) ◽  
pp. 267-280 ◽  
Author(s):  
Christoph Claas ◽  
Simone Seiter ◽  
Andreas Claas ◽  
Larissa Savelyeva ◽  
Manfred Schwab ◽  
...  

Recently, we have described a panel of metastasis-associated antigens in the rat, i.e., of molecules expressed on metastasizing, but not on nonmetastasizing tumor lines. One of these molecules, recognized by the monoclonal antibody D6.1 and named accordingly D6.1A, was found to be abundantly expressed predominantly on mesenchyme-derived cells. The DNA of the antigen has been isolated and cloned. Surprisingly, the gene product proved to interfere strongly with coagulation. The 1.182-kb cDNA codes for a 235–amino acid long molecule with a 74.2% homology in the nucleotide and a 70% homology in the amino acid sequence to CO-029, a human tumor-associated molecule. According to the distribution of hydrophobic and hydrophilic amino acids, D6.1A belongs to the tetraspanin superfamily. Western blotting of D6.1A-positive metastasizing tumor lines revealed that the D6.1A, like many tetraspanin molecules, is linked to further membrane molecules, one of which could be identified as α6β1 integrin. Transfection of a low-metastasizing tumor cell line with D6.1A cDNA resulted in increased metastatic potential and provided a clue as to the functional role of D6.1A. We noted massive bleeding around the metastases and, possibly as a consequence, local infarctions predominantly in the mesenteric region and all signs of a consumption coagulopathy. By application of the D6.1 antibody the coagulopathy was counterregulated, though not prevented. It has been known for many years that tumor growth and progression is frequently accompanied by thrombotic disorders. Our data suggest that the phenomenon could well be associated with the expression of tetraspanin molecules.


1989 ◽  
Vol 257 (1) ◽  
pp. 291-292 ◽  
Author(s):  
Y Nagata ◽  
R Konno ◽  
Y Yasumura ◽  
T Akino

The physiological role of D-amino acid oxidase was investigated by using mutant ddY/DAO- mice lacking the enzyme. Free D-amino acid concentrations in the mutant mice were significantly higher than those of control ddY/DAO+ mice in kidney, liver, lung, heart, brain, erythrocytes, serum and urine. The results suggest that the enzyme is involved in the catabolism of free D-amino acids in the body, and that free D-amino acids are also excreted into urine.


2012 ◽  
Vol 8 ◽  
pp. 1657-1667 ◽  
Author(s):  
Lilly Nagel ◽  
Carsten Budke ◽  
Axel Dreyer ◽  
Thomas Koop ◽  
Norbert Sewald

Antifreeze glycopeptides (AFGPs) are a special class of biological antifreeze agents, which possess the property to inhibit ice growth in the body fluids of arctic and antarctic fish and, thus, enable life under these harsh conditions. AFGPs are composed of 4–55 tripeptide units -Ala-Ala-Thr- glycosylated at the threonine side chains. Despite the structural homology among all the fish species, divergence regarding the composition of the amino acids occurs in peptides from natural sources. Although AFGPs were discovered in the early 1960s, the adsorption mechanism of these macromolecules to the surface of the ice crystals has not yet been fully elucidated. Two AFGP diastereomers containing different amino acid configurations were synthesized to study the influence of amino acid stereochemistry on conformation and antifreeze activity. For this purpose, peptides containing monosaccharide-substituted allo-L- and D-threonine building blocks were assembled by solid-phase peptide synthesis (SPPS). The retro-inverso AFGP analogue contained all amino acids in D-configuration, while the allo-L-diastereomer was composed of L-amino acids, like native AFGPs, with replacement of L-threonine by its allo-L-diastereomer. Both glycopeptides were analyzed regarding their conformational properties, by circular dichroism (CD), and their ability to inhibit ice recrystallization in microphysical experiments.


2021 ◽  
Vol 9 ◽  
Author(s):  
Aaron Ciechanover

Proteins are the engines of all forms of life, for humans and for all the plant and animal kingdoms. Proteins are used both to build organs (such as bones, muscles, and skin) and to perform bodily functions. These functions range from digestion (processing food and converting it into energy), to enabling movement and sensation (sight and hearing), to protecting the body from foreign invaders with our antibodies, which are also proteins. What are proteins? They can be compared to words in a language that contains letters. In the Hebrew alphabet, there are 26 letters out of which countless words can be composed. But when we write, we use just a fraction of these infinite options, with the average number of letters in a word ranging between 3 and 8. The biological “protein alphabet” is comprised of 20 “letters” called amino acids, which are the building blocks of the proteins that make up the body. Proteins are chains of amino acid, linked together in a specific order governed by the DNA. Unlike the words of a spoken language, the average protein consists of hundreds of amino acids. The extensive length of proteins and the chemical composition of the amino acids make proteins sensitive to many factors, such as high temperatures, radiation, and chemicals. All these factors damage proteins and alter their fragile structures, negatively affecting how they function. When proteins are damaged or when they finish performing their functions and are no longer needed, the body breaks them down. With my doctoral adviser, Prof. Avram Hershko, and our research collaborator, Prof. Irwin Rose from the Fox Chase Cancer Center in Philadelphia, we discovered the mechanism responsible for targeted degradation of proteins in cells. This degradation can recognize damaged proteins or proteins that are not needed anymore, while leaving intact the “healthy,” functional ones. This mechanism is called the ubiquitin system after its principal protein, ubiquitin, which was the first protein we discovered in the system. Ubiquitin’s role is to tag undesirable proteins so that the cell’s “grinder” can recognize them and break them down, enabling the cell to function normally. In this article, we will explain the story of proteins and the ubiquitin system that we discovered in a study that earned us, among other prizes, the Nobel Prize in Chemistry in 2004.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S42-S42
Author(s):  
Kohei Sugihara ◽  
Nobuhiko Kamada

Abstract Background Recent accumulating evidence suggests that amino acids have crucial roles in the maintenance of intestinal homeostasis. In inflammatory bowel disease (IBD), amino acid metabolism is changed in both host and the gut microbiota. Among amino acids, L-serine plays a central role in several metabolic processes that are essential for the growth and survival of both mammalian and bacterial cells. However, the role of L-serine in intestinal homeostasis and IBD remains incompletely understood. In this study, we investigated the effect of dietary L-serine on intestinal inflammation in a murine model of colitis. Methods Specific pathogen-free (SPF) mice were fed either a control diet (amino acid-based diet) or an L-serine-deficient diet (SDD). Colitis was induced by the treatment of dextran sodium sulfate (DSS). The gut microbiome was analyzed by 16S rRNA sequencing. We also evaluate the effect of dietary L-serine in germ-free mice and gnotobiotic mice that were colonized by a consortium of non-mucolytic bacterial strains or the consortium plus mucolytic bacterial strains. Results We found that the SDD exacerbated experimental colitis in SPF mice. However, the severity of colitis in SDD-fed mice was comparable to control diet-fed mice in germ-free condition, suggesting that the gut microbiota is required for exacerbation of colitis caused by the restriction of dietary L-serine. The gut microbiome analysis revealed that dietary L-serine restriction fosters the blooms of a mucus-degrading bacterium Akkermansia muciniphila and adherent-invasive Escherichia coli in the inflamed gut. Consistent with the expansion of mucolytic bacteria, SDD-fed mice showed a loss of the intestinal mucus layer. Dysfunction of the mucus barrier resulted in increased intestinal permeability, thereby leading to bacterial translocation to the intestinal mucosa, which subsequently increased the severity of colitis. The increased intestinal permeability and subsequent bacterial translocation were observed in SDD-fed gnotobiotic mice that colonized by mucolytic bacteria. In contrast, dietary L-serine restriction did not alter intestinal barrier integrity in gnotobiotic mice that colonized only by non-mucolytic bacteria. Conclusion Our results suggest that dietary L-serine regulates the integrity of the intestinal mucus barrier during inflammation by limiting the expansion of mucus degrading bacteria.


1993 ◽  
Vol 268 (36) ◽  
pp. 26941-26949
Author(s):  
A D'Aniello ◽  
G D'Onofrio ◽  
M Pischetola ◽  
G D'Aniello ◽  
A Vetere ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1018
Author(s):  
Hiroaki Yokota

Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.


1972 ◽  
Vol 54 (2) ◽  
pp. 279-294 ◽  
Author(s):  
David C. Shephard ◽  
Wendy B. Levin

The ability of chloroplasts isolated from Acetabulana mediterranea to synthesize the protein amino acids has been investigated. When this chloroplast isolate was presented with 14CO2 for periods of 6–8 hr, tracer was found in essentially all amino acid species of their hydrolyzed protein Phenylalanine labeling was not detected, probably due to technical problems, and hydroxyproline labeling was not tested for The incorporation of 14CO2 into the amino acids is driven by light and, as indicated by the amount of radioactivity lost during ninhydrin decarboxylation on the chromatograms, the amino acids appear to be uniformly labeled. The amino acid labeling pattern of the isolate is similar to that found in plastids labeled with 14CO2 in vivo. The chloroplast isolate did not utilize detectable amounts of externally supplied amino acids in light or, with added adenosine triphosphate (ATP), in darkness. It is concluded that these chloroplasts are a tight cytoplasmic compartment that is independent in supplying the amino acids used for its own protein synthesis. These results are discussed in terms of the role of contaminants in the observed synthesis, the "normalcy" of Acetabularia chloroplasts, the synthetic pathways for amino acids in plastids, and the implications of these observations for cell compartmentation and chloroplast autonomy.


Sign in / Sign up

Export Citation Format

Share Document