scholarly journals Escherichia coli amino acid auxotrophic expression host strains for investigating protein structure-function relationships

Author(s):  
Toshio Iwasaki ◽  
Yoshiharu Miyajima-Nakano ◽  
Risako Fukazawa ◽  
Myat T Lin ◽  
Shin-Ichi Matsushita ◽  
...  

Abstract A set of C43(DE3) and BL21(DE3) Escherichia coli host strains that are auxotrophic for various amino acids is briefly reviewed. These strains require the addition of a defined set of one or more amino acids in the growth medium, and have been specifically designed for overproduction of membrane or water-soluble proteins selectively labeled with stable isotopes such as 2H, 13C and 15N. The strains described here are available for use and have been deposited into public strain banks. Although they cannot fully eliminate the possibility of isotope dilution and mixing, metabolic scrambling of the different amino acid types can be minimized through a careful consideration of the bacterial metabolic pathways. The use of a suitable auxotrophic expression host strain with an appropriately isotopically labeled growth medium ensures high levels of isotope labeling efficiency as well as selectivity for providing deeper insight into protein structure-function relationships.

2021 ◽  
Vol 22 (3) ◽  
pp. 1018
Author(s):  
Hiroaki Yokota

Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.


1989 ◽  
Vol 44 (9-10) ◽  
pp. 838-844 ◽  
Author(s):  
H. Mach ◽  
M. Hecker ◽  
I. Hill ◽  
A. Schroeter ◽  
F. Mach

The viability of three isogenic relA+/relA strain pairs of Escherichia coli (CP78/CP79; NF 161/ NF162; CP 107/CP 143) was studied during prolonged starvation for amino acids, glucose or phosphate. After amino acid limitation we found a prolonged viability of all relA+ strains which synthesized ppGpp. We suggest that some ppGpp-mediated pleiotropic effects of the stringent response (e.g. glykogen accumulation, enhanced protein turnover) might be involved in this prolongation of survival. After glucose or phosphate starvation there was no difference in the relA+/relA strains either in the ppGpp content or in the survival.


1997 ◽  
Vol 41 (2) ◽  
pp. 314-318 ◽  
Author(s):  
E Hannecart-Pokorni ◽  
F Depuydt ◽  
L de wit ◽  
E van Bossuyt ◽  
J Content ◽  
...  

The amikacin resistance gene aac(6')-Im [corrected] from Citrobacter freundii Cf155 encoding an aminoglycoside 6'-N-acetyltransferase was characterized. The gene was identified as a coding sequence of 521 bp located down-stream from the 5' conserved segment of an integron. The sequence of this aac(6')-Im [corrected] gene corresponded to a protein of 173 amino acids which possessed 64.2% identity in a 165-amino-acid overlap with the aac(6')-Ia gene product (F.C. Tenover, D. Filpula, K.L. Phillips, and J. J. Plorde, J. Bacteriol. 170:471-473, 1988). By using PCR, the aac(6')-Im [corrected] gene could be detected in 8 of 86 gram-negative clinical isolates from two Belgian hospitals, including isolates of Citrobacter, Klebsiella spp., and Escherichia coli. PCR mapping of the aac(6')-Im [corrected] gene environment in these isolates indicated that the gene was located within a sulI-type integron; the insert region is 1,700 bases long and includes two genes cassettes, the second being ant (3")-Ib.


1962 ◽  
Vol 40 (1) ◽  
pp. 459-469 ◽  
Author(s):  
P. H. Jellinck ◽  
Louise Irwin

Aerobic incubation of estrone-16-C14with peroxidase in the presence of serum albumin and other proteins resulted in the formation of water-soluble, ether-insoluble metabolites in high percentage yields. Similar products were formed when protein was replaced by cysteine or tryptophan but none of the other amino acids tested had any effect. The evidence points to an initial generation of hydrogen peroxide from these nitrogenous compounds by the enzyme acting as an aerobic oxidase, and the subsequent peroxidation of estrone to highly reactive products. These then combine with the protein or amino acid or else undergo alternative reactions. A strong chemical bond is formed with albumin and attempts to release the estrone metabolites from it were unsuccessful. Uterine homogenates from estrogen-treated rats showing high DPNH oxidase activity contained no "peroxidase" as measured by the formation of water-soluble products from estrone in the presence of protein.


2007 ◽  
Vol 189 (23) ◽  
pp. 8765-8768 ◽  
Author(s):  
Vrajesh A. Karkhanis ◽  
Anjali P. Mascarenhas ◽  
Susan A. Martinis

ABSTRACT Leucyl-tRNA synthetase (LeuRS) has evolved an editing function to clear misactivated amino acids. An Escherichia coli-based assay was established to identify amino acids that compromise the fidelity of LeuRS and translation. Multiple nonstandard as well as standard amino acids were toxic to the cell when LeuRS editing was inactivated.


2001 ◽  
Vol 45 (8) ◽  
pp. 2378-2380 ◽  
Author(s):  
S. Marvin Friedman ◽  
Tao Lu ◽  
Karl Drlica

ABSTRACT In three Escherichia coli mutants, a change (Ala-51 to Val) in the gyrase A protein outside the standard quinolone resistance-determining region (QRDR) lowered the level of quinolone susceptibility more than changes at amino acids 67, 82, 84, and 106 did. Revision of the QRDR to include amino acid 51 is indicated.


2012 ◽  
Vol 426 (2) ◽  
pp. 126-128 ◽  
Author(s):  
Christopher O’Grady ◽  
Benjamin L. Rempel ◽  
Akosiererem Sokaribo ◽  
Sergiy Nokhrin ◽  
Oleg Y. Dmitriev

Sign in / Sign up

Export Citation Format

Share Document