scholarly journals Maximizing Bark and Ambrosia Beetle (Coleoptera: Curculionidae) Catches in Trapping Surveys for Longhorn and Jewel Beetles

2020 ◽  
Vol 113 (6) ◽  
pp. 2745-2757 ◽  
Author(s):  
Matteo Marchioro ◽  
Davide Rassati ◽  
Massimo Faccoli ◽  
Kate Van Rooyen ◽  
Chantelle Kostanowicz ◽  
...  

Abstract Bark and ambrosia beetles are commonly moved among continents within timber and fresh wood-packaging materials. Routine visual inspections of imported commodities are often complemented with baited traps set up in natural areas surrounding entry points. Given that these activities can be expensive, trapping protocols that attract multiple species simultaneously are needed. Here we investigated whether trapping protocols commonly used to detect longhorn beetles (Coleoptera: Cerambycidae) and jewel beetles (Coleoptera: Buprestidae) can be exploited also for detecting bark and ambrosia beetles. In factorial experiments conducted in 2016 both in Italy (seminatural and reforested forests) and Canada (mixed forest) we tested the effect of trap color (green vs purple), trap height (understory vs canopy), and attractive blend (hardwood-blend developed for broadleaf-associated wood-boring beetles vs ethanol in Italy; hardwood-blend vs softwood-blend developed for conifer-associated wood-boring beetles, in Canada) separately on bark beetles and ambrosia beetles, as well as on individual bark and ambrosia beetle species. Trap color affected catch of ambrosia beetles more so than bark beetles, with purple traps generally more attractive than green traps. Trap height affected both beetle groups, with understory traps generally performing better than canopy traps. Hardwood-blend and ethanol performed almost equally in attracting ambrosia beetles in Italy, whereas hardwood-blend and softwood-blend were more attractive to broadleaf-associated species and conifer-associated species, respectively, in Canada. In general, we showed that trapping variables suitable for generic surveillance of longhorn and jewel beetles may also be exploited for survey of bark and ambrosia beetles, but trapping protocols must be adjusted depending on the forest type.

Insects ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 749
Author(s):  
Giacomo Cavaletto ◽  
Massimo Faccoli ◽  
Lorenzo Marini ◽  
Johannes Spaethe ◽  
Gianluca Magnani ◽  
...  

Traps baited with attractive lures are increasingly used at entry-points and surrounding natural areas to intercept exotic wood-boring beetles accidentally introduced via international trade. Several trapping variables can affect the efficacy of this activity, including trap color. In this study, we tested whether species richness and abundance of jewel beetles (Buprestidae), bark and ambrosia beetles (Scolytinae), and their common predators (i.e., checkered beetles, Cleridae) can be modified using trap colors different to those currently used for surveillance of jewel beetles and bark and ambrosia beetles (i.e., green or black). We show that green and black traps are generally efficient, but also that many flower-visiting or dark-metallic colored jewel beetles and certain bark beetles are more attracted by other colors. In addition, we show that checkered beetles have color preferences similar to those of their Scolytinae preys, which limits using trap color to minimize their inadvertent removal. Overall, this study confirmed that understanding the color perception mechanisms in wood-boring beetles can lead to important improvements in trapping techniques and thereby increase the efficacy of surveillance programs.


Insects ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Christopher M. Ranger ◽  
Christopher T. Werle ◽  
Peter B. Schultz ◽  
Karla M. Addesso ◽  
Jason B. Oliver ◽  
...  

Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) are destructive wood-boring insects of horticultural trees. We evaluated long-lasting insecticide netting for protecting stems against ambrosia beetles. Container-grown eastern redbud, Cercis canadensis, trees were flood-stressed to induce ambrosia beetle attacks, and deltamethrin-treated netting was wrapped from the base of the stem vertically to the branch junction. Trees were deployed under field conditions in Ohio, Virginia, Tennessee, and Mississippi with the following treatments: (1) flooded tree; (2) flooded tree with untreated netting; (3) flooded tree with treated ‘standard mesh’ netting of 24 holes/cm2; (4) flooded tree with treated ‘fine mesh’ netting of 28 holes/cm2; and/or (5) non-flooded tree. Treated netting reduced attacks compared to untreated netting and/or unprotected trees in Mississippi in 2017, Ohio and Tennessee in 2018, and Virginia in 2017–2018. Inconsistent effects occurred in Mississippi in 2018. Fewer Anisandrus maiche, Xylosandrus germanus, and Xyleborinus saxesenii were dissected from trees deployed in Ohio protected with treated netting compared to untreated netting; trees deployed in other locations were not dissected. These results indicate long-lasting insecticide netting can provide some protection of trees from ambrosia beetle attacks.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 342
Author(s):  
Fabienne Grousset ◽  
Jean-Claude Grégoire ◽  
Hervé Jactel ◽  
Andrea Battisti ◽  
Anita Benko Beloglavec ◽  
...  

Many bark and ambrosia beetle species (Coleoptera: Scolytinae and Platypodinae) are known to have spread worldwide in relation to international trade. Concerns have been expressed within the European and Mediterranean Plant Protection Organization (EPPO) about recent introductions of non-indigenous species of these groups. Regulation of the non-coniferous wood trade into many EPPO member countries is currently not sufficient to cover such risks. In 2018–2019, an EPPO study on the risk of bark and ambrosia beetles associated with imported non-coniferous wood was carried out, and the key characteristics contributing to the pest risk from introduced species were determined using expert consensus. This paper summarizes the key findings of the study, which are available in full detail on the EPPO website. The study identified biological and other risk factors and illustrated them with examples from 26 beetle species or groups of species known to be invasive or posing a threat to plant health. These representative species were classified into three categories based on known damage and level of uncertainty. In the present article, factorial discriminant analyses were used to identify features of bark and ambrosia beetle biology associated with damage caused and invasiveness. Based on the information assembled and consideration of the risk factors, it was recommended that in order to prevent the introduction of new bark and ambrosia beetles via non-coniferous wood commodities, horizontal phytosanitary measures should be adopted, irrespective of the host plant species and the origin (i.e., for all genera of non-coniferous woody plants and from all origins). Phytosanitary measures are presented here for various wood commodities.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1223
Author(s):  
Jaroslav Holuša ◽  
Tomáš Fiala ◽  
Jiří Foit

Research Highlights: The percentage of canopy closure was found to be the main factor associated with ambrosia beetle abundance and species richness. The latter two variables increased as canopy closure increased, probably because a high percentage of canopy closure provides a stable and humid environment suitable for the growth of ambrosia fungi. Objectives: Oak is a common host tree for ambrosia beetles (Coleoptera: Curculionidae: Scolytinae), which have independently evolved a nutritional mutualism with fungi. We suspected that ambrosia beetles might have specific habitat preferences that are different from those of other saproxylic beetles and that reflect the specific habitat preferences of their food, i.e., ambrosia fungi. Methods: We assessed ambrosia beetle abundance with ethanol-lured traps in five old-growth oak dominated forests and five managed oak dominated forests (one trap per forest) during the vegetation period in 2020. We determined whether ambrosia beetle abundance and species richness depend on forest type (managed vs. unmanaged), degree of canopy closure, abundance of oak trees, abundance of coarse deadwood, and abundance of dead oak branches. Results: In total, 4137 individuals of six species of ambrosia beetles associated with oaks were captured. The native ambrosia beetle Anisandrus dispar represented the majority of trapped ambrosia bark beetles. A. dispar along with another ambrosia beetle, Xyleborinus saxesenii, represented 99% of all captured beetles. Conclusions: In addition to canopy closure, the abundance of oak trees and the abundance of dead oak branches were significantly associated with ambrosia beetle abundance and species richness. The abundance of A. dispar was mainly correlated with dead oak branch abundance and the degree of canopy closure, whereas the abundances of X. saxesenii and of the invasive species Xyleborinus attenuatus and Cyclorhipidion bodoanum were mainly correlated with the net area occupied by oak trees.


Zootaxa ◽  
2019 ◽  
Vol 4657 (2) ◽  
pp. 397-400 ◽  
Author(s):  
TINE HAUPTMAN ◽  
BARBARA PIŠKUR ◽  
MASSIMO FACCOLI ◽  
BLAŽ REKANJE ◽  
ANDRAŽ MARINČ ◽  
...  

In September 2017, during the monitoring of the non-native ambrosia beetle Xylosandrus germanus (Blandford, 1894), one specimen of an unknown ambrosia bark beetle species was collected in Slovenia. The specimen was trapped in an ethanol-baited trap located in Klavže (46° 09´ 39˝ N, 13° 48´ 7˝ E), in the western part of Slovenia. The most characteristic feature distinguishing the specimen from other known ambrosia beetle species occurring in Slovenia was the asperities that covered the entire surface of the pronotum. Based on the scientific literature concerning the non-native bark and ambrosia beetles in Europe (Kirkendall & Faccoli 2010) and illustrated identification keys (Rabaglia et al. 2006; Faccoli et al. 2009), we identified the beetle by its morphological characteristics as Ambrosiodmus rubricollis (Eichhoff, 1875). As a result of this find, a specific monitoring was set up in 2018 in Slovenia with the aim to improve the knowledge about occurrence and distribution of A. rubricollis in this country. 


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 28
Author(s):  
Dimitrios N. Avtzis ◽  
Ferenc Lakatos

Bark and wood-boring insects represent a very diverse group of insects that includes bark and ambrosia beetles, cerambycids, weevils, jewel beetles, or even anobiids from the order of beetles (Coleoptera), but in the broader sense other insect orders like Lepidoptera (e [...]


Smart Cities ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 271-285
Author(s):  
Iraklis Rigakis ◽  
Ilyas Potamitis ◽  
Nicolaos-Alexandros Tatlas ◽  
Stelios M. Potirakis ◽  
Stavros Ntalampiras

Is there a wood-feeding insect inside a tree or wooden structure? We investigate several ways of how deep learning approaches can massively scan recordings of vibrations stemming from probed trees to infer their infestation state with wood-boring insects that feed and move inside wood. The recordings come from remotely controlled devices that sample the internal soundscape of trees on a 24/7 basis and wirelessly transmit brief recordings of the registered vibrations to a cloud server. We discuss the different sources of vibrations that can be picked up from trees in urban environments and how deep learning methods can focus on those originating from borers. Our goal is to match the problem of the accelerated—due to global trade and climate change— establishment of invasive xylophagus insects by increasing the capacity of inspection agencies. We aim at introducing permanent, cost-effective, automatic monitoring of trees based on deep learning techniques, in commodity entry points as well as in wild, urban and cultivated areas in order to effect large-scale, sustainable pest-risk analysis and management of wood boring insects such as those from the Cerambycidae family (longhorn beetles).


2021 ◽  
Vol 11 ◽  
Author(s):  
Maximilian Lehenberger ◽  
Markus Benkert ◽  
Peter H. W. Biedermann

Bark beetles (sensu lato) colonize woody tissues like phloem or xylem and are associated with a broad range of micro-organisms. Specific fungi in the ascomycete orders Hypocreales, Microascales and Ophistomatales as well as the basidiomycete Russulales have been found to be of high importance for successful tree colonization and reproduction in many species. While fungal mutualisms are facultative for most phloem-colonizing bark beetles (sensu stricto), xylem-colonizing ambrosia beetles are long known to obligatorily depend on mutualistic fungi for nutrition of adults and larvae. Recently, a defensive role of fungal mutualists for their ambrosia beetle hosts was revealed: Few tested mutualists outcompeted other beetle-antagonistic fungi by their ability to produce, detoxify and metabolize ethanol, which is naturally occurring in stressed and/or dying trees that many ambrosia beetle species preferentially colonize. Here, we aim to test (i) how widespread beneficial effects of ethanol are among the independently evolved lineages of ambrosia beetle fungal mutualists and (ii) whether it is also present in common fungal symbionts of two bark beetle species (Ips typographus, Dendroctonus ponderosae) and some general fungal antagonists of bark and ambrosia beetle species. The majority of mutualistic ambrosia beetle fungi tested benefited (or at least were not harmed) by the presence of ethanol in terms of growth parameters (e.g., biomass), whereas fungal antagonists were inhibited. This confirms the competitive advantage of nutritional mutualists in the beetle’s preferred, ethanol-containing host material. Even though most bark beetle fungi are found in the same phylogenetic lineages and ancestral to the ambrosia beetle (sensu stricto) fungi, most of them were highly negatively affected by ethanol and only a nutritional mutualist of Dendroctonus ponderosae benefited, however. This suggests that ethanol tolerance is a derived trait in nutritional fungal mutualists, particularly in ambrosia beetles that show cooperative farming of their fungi.


2020 ◽  
Vol 153 (1) ◽  
pp. 19-35
Author(s):  
Dezene P.W. Huber ◽  
Christopher J. Fettig ◽  
John H. Borden

AbstractAlthough the use of nonhost plants intercropped among host crops has been a standard agricultural practice for reducing insect herbivory for millennia, the use of nonhost signals to deter forest pests is much more recent, having been developed over the past several decades. Early exploratory studies with synthetic nonhost volatile semiochemicals led to targeted electrophysiological and trapping experiments on a variety of bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) across three continents. This work disclosed a suite of antennally and behaviourally active nonhost volatiles, which are detected in common across a range of coniferophagous bark beetles. It also established the fact that dispersing bark and ambrosia beetles detect nonhost signals while in flight and avoid nonhost trees without necessarily landing on them. Later work showed that groups of synthetic nonhost volatiles, sometimes combined with insect-derived antiaggregants, are effective in protecting individual trees and forest stands. Further work in this system may lead to the development of a variety of new and useful tactics for use in various integrated pest management strategies.


1963 ◽  
Vol 54 (2) ◽  
pp. 229-266 ◽  
Author(s):  
F. G. Browne

Brief notes are given on the distribution and habits of 42 species of Scolytidae and 34 of Platypodidae that occur as common forest insects in Ghana. A considerable number of these can be considered as beneficial insects because they do little damage but assist in the rapid break-down of dead trees and felling slash. Others are injurious mainly as timber borers, shoot borers or, generally to a lesser extent, as bark beetles and seed insects. Trachyostus ghanaensis Schedl and Doliopygus dubius (Samps.) are of outstanding importance in their constant or frequent habit of attacking the wood of living trees of commercial value; Platypus hintzi Schanf., Doliopygus conradti (Strohm.) and D. brevis (Strohm.) are probably the most important ambrosia beetle borers of newly felled timber; and Xyleborus semiopacus Eichh. has been known to destroy whole plantations of young forest trees.


Sign in / Sign up

Export Citation Format

Share Document