Accelerated Sexual Maturation in Methoprene-Treated Sterile and Fertile Male Queensland Fruit Flies (Diptera: Tephritidae), and Mosquito Larvicide as an Economical and Effective Source of Methoprene

2019 ◽  
Vol 112 (6) ◽  
pp. 2842-2849 ◽  
Author(s):  
Saleh Mohammad Adnan ◽  
Iffat Farhana ◽  
Jess R Inskeep ◽  
Polychronis Rempoulakis ◽  
Phillip W Taylor

Abstract Queensland fruit flies Bactrocera tryoni (‘Q-fly’) have long adult prereproductive development periods, which can present challenges for sterile insect technique (SIT) programs. Holding the sterile flies in release facilities is expensive for control programs. Alternatively, releases of sexually immature males can lead to substantial mortality of sterile males before they mature. Recent studies have reported effectiveness of dietary supplementation with a mosquito larvicide (NOMOZ) that contains S-methoprene, a juvenile hormone analogue, for accelerating sexual development of fertile Q-fly males. However, it is not known whether effects on sterile flies are comparable to effects on fertile flies, or whether effects of methoprene-containing larvicide are comparable to effects of analytical standard methoprene such has been used in most studies. Here we address both knowledge gaps, investigating the effects of analytical standard methoprene and NOMOZ mixed with food and provided for 48 h following emergence on sexual development and longevity of fertile and sterile Q-flies. Compared with controls, fertile and sterile male Q-flies that were provided diets supplemented with methoprene from either source exhibited substantially accelerated sexual development by 2–3 d and longer mating duration. Unlike males, females did not respond to methoprene treatment. Although fertile and sterile flies were generally similar in sexual development and response to methoprene treatment, sterile flies of both sexes tended to have shorter copula duration than fertile flies. Neither methoprene supplements nor sterilization affected longevity of flies. The present study confirms effectiveness of dietary methoprene supplements in accelerating sexual development of both fertile and sterile male (but not female) Q-flies, and also confirms that low-cost mosquito larvicides that contain methoprene can achieve effects similar to those for high-cost analytical grade methoprene as prerelease supplements for Q-fly SIT.

2019 ◽  
Vol 72 ◽  
pp. 279
Author(s):  
David A.J. Teulon ◽  
John M. Kean ◽  
Karen F. Armstrong

Fruit flies (Family Tephritidae), in particular the Queensland fruit fly (Bactrocera tryoni; QFF), areone of the biggest biosecurity risks for New Zealand horticulture. New Zealand has one of the bestscience-based biosecurity systems in the world, based on years of experience and sound research. Theintroduction of fruit flies to New Zealand is now well managed in commercial fruit imports, but the riskis rising from growing trade and travel and, in the case of QFF, climatic adaptation and spread to moresouthern localities. Smarter solutions are continually needed to manage this increasing risk, and to dealwith such pests when they arrive. We present a brief summary of current and anticipated research aimedat reducing the likelihood of entry into New Zealand and/or minimising the impact for the fruit flyspecies of greatest threat to New Zealand. Research spans risk assessment, pathway risk management,diagnostics, surveillance and eradication.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 662
Author(s):  
Flávio R. M. Garcia ◽  
Sérgio M. Ovruski ◽  
Lorena Suárez ◽  
Jorge Cancino ◽  
Oscar E. Liburd

Biological control has been the most commonly researched control tactic within fruit fly management programs. For the first time, a review is carried out covering parasitoids and predators of fruit flies (Tephritidae) from the Americas and Hawaii, presenting the main biological control programs in this region. In this work, 31 species of fruit flies of economic importance are considered in the genera Anastrepha (11), Rhagoletis (14), Bactrocera (4), Ceratitis (1), and Zeugodacus (1). In this study, a total of 79 parasitoid species of fruit flies of economic importance are listed and, from these, 50 are native and 29 are introduced. A total of 56 species of fruit fly predators occur in the Americas and Hawaii.


Author(s):  
Beatriz Jordão Paranhos ◽  
Dori Edson Nava ◽  
Aldo Malavasi

Abstract: Fruit flies are the main pests of fruit growing in Brazil. They have been managed predominantly with the use of insecticides applied as cover spray and or/as toxic baits. Currently, the trend of management strategies is toward the adoption of methods that cause the lowest environmental impact in large areas. In this context, biological control is an excellent option to be used together with other management strategies, such as sterile insects, because it leaves no residues, does not disturb nontarget pests, and can be permanent if the natural enemy establishes itself in the field. This review paper addresses the current knowledge on the biological control of fruit flies in Brazil, highlighting the great biodiversity of its natural enemies, especially parasitoids, its biology and ecology. The classical biological control programs in Brazil are also reported, from the introduction of Tetrastichus giffardianus (Hymenoptera: Eulophidae), in 1937, to control Ceratitis capitata (Diptera: Tephritidae), to that of Fopius arisanus (Hymenoptera: Braconidae), in 2012, to control Bactrocera carambolae (Diptera: Tephritidae). Finally, the obtained advances are pointed out, as well as the main bottlenecks and perspectives for the effective use of biological control programs against fruit flies.


2009 ◽  
Vol 131 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Diana Pérez-Staples ◽  
Christopher W. Weldon ◽  
Catherine Smallridge ◽  
Phillip W. Taylor

2016 ◽  
Vol 46 (1) ◽  
pp. 51-56
Author(s):  
Rosenya Michely Cintra Filgueiras ◽  
Francisco Roberto de Azevedo ◽  
Raul Azevedo ◽  
Ricardo Braga de Farias ◽  
Cristiane Ramos Coutinho

ABSTRACT Fruit flies are typically managed using hydrolyzed protein, which is difficult for family farmers to obtain. This study aimed at assessing the efficiency of livestock manure for monitoring and/or controlling this pest in guava tree orchards. The first experiment tested the efficiency of guava juice and manure from cattle, sheep, pig, horse and chicken as attractants for fruit flies. Once the best bait had been established, a second experiment was conducted using guava juice and chicken manure extract at concentrations of 10 %, 30 %, 50 %, 70 % and 100 %. A third assay analyzed guava juice and chicken manure extract (10 %) at three attractant aging periods (3, 7 and 14 days after trap installation). The cost-effectiveness ratio between guava juice and extract was also analyzed. It was concluded that fruit flies prefer the chicken manure extract (10 %), with greater capture observed three days after trap installation, which can replace the guava juice in the agroecological management of fruit flies in guava trees in family farms, since it is low cost and efficient.


Sign in / Sign up

Export Citation Format

Share Document