Susceptibility of Rice to Oebalus pugnax (F.) (Hemiptera: Pentatomidae) Feeding at Different Levels of Grain Maturity and Impacts on Insecticide Termination

Author(s):  
A J Cato ◽  
G M Lorenz ◽  
N R Bateman ◽  
J T Hardke ◽  
J L Black ◽  
...  

Abstract The stages of rice, Oryza sativa L. (Poales: Poaceae), grain maturity that are most susceptible to rice stink bug, Oebalus pugnax (F.), damage have been identified; however, the stage at which they are no longer capable of causing appreciable damage during grain maturity is unclear. The objective of this study was to determine the susceptibility of rice to rice stink bug feeding at different levels of grain maturity and determine an insecticide termination timing. Rice stink bug damage was examined using five levels of grain maturity described as percent of kernels reaching mature straw coloration referred to as hard dough (20, 40, 60, 80, and 100%) across a range of infestation levels using single panicle sleeve cages and large cages. Hybrid and conventional cultivar rice panicles at 20, 40, and 60% hard dough were found to be susceptible to indirect yield loss, as two rice stink bugs per panicle resulted in over 7% peck. In large cage trials, 25 rice stink bugs caused 0.7–1% peck to hybrid and conventional rice plots at 20% hard dough. Much less damage was observed once rice reached 60% hard dough, where peck averages only reached 0.4%. Decreased damage at 60% hard dough was validated using uncaged trials where 0.4% additional peck was observed in unsprayed plots. These data indicate that rice in the early stages of hard dough is susceptible to large levels of indirect yield loss, but unless significant densities of rice stink bug are present at 60% hard dough, no more sampling or applications are necessary.

Author(s):  
Aaron J Cato ◽  
Nicholas R Bateman ◽  
Gus M Lorenz ◽  
Jarrod T Hardke ◽  
Joseph L Black ◽  
...  

Abstract The rice stink bug, Oebalus pugnax (F.), is a key pest of heading rice, Oryza sativa L. (Poales: Poaceae), in the southern United States. Sweep net sampling is the recommended method for sampling rice stink bug in rice, but there currently exists no specific recommendation for sweep length, and a large amount of variation likely exists amongst samplers. The objectives of this study were to determine the role that sweep length plays in sampling accuracy and determine the feasibility of using sweep lengths smaller than 180°. When monitoring sweep lengths by consultants, producers, and researchers, a large amount of variation in sweep length and a significant linear relationship between sweep length and rice stink bug catch per 10 sweeps was observed. Sweep length was then controlled at three levels (0.8, 1.8, and 3.5 m) and a change from 0.8 to 1.8 m in sweep length led to an increase on average of 2.28 rice stink bugs per 10 sweeps. These data suggest knowledge of sweep length is vital, and paired with large amounts of observed variation in sweep length, recommending a specific sweep length is ideal. Using Taylor’s values, it was determined that 1.8 m sweeps resulted in density estimates that were as reliable as 3.5 m (180°) sweeps, suggesting a longer sweep length was not necessary. A 1.8 m sweep length recommendation would create an easier sampling regimen that is still reliable, which could lead to more accurate action threshold decisions being made for rice stink bug if it increases adoption in consultants and producers.


2005 ◽  
Vol 40 (4) ◽  
pp. 378-384 ◽  
Author(s):  
Ron Cherry ◽  
Andy Bennett

The effect of weeds on rice stink bug, Oebalus pugnax (F.), populations was studied in Florida rice fields. Fall panicum, Panicum dichotomiflorum Michaux, was the most common grassy weed found in weedy areas of rice fields, and significantly more rice stink bugs were found in these weedy areas vs nonweedy areas in the fields. Large numbers of rice stink bugs also were found in unmowed roadsides containing heading weeds, especially coast cockspur, Echinochloa walteri (Pursh) Heller. In contrast, few rice stink bugs were found in mowed roadsides which prevented weed heading around rice fields. Our study shows that weed control helps reduce rice stink bug populations in Florida rice.


2020 ◽  
Vol 113 (6) ◽  
pp. 2732-2738
Author(s):  
Kukuh Hernowo ◽  
Kathy Kamminga ◽  
Jeffrey A Davis

Abstract Southern green stink bug, Nezara viridula (L.) and redbanded stink bug, Piezodorus guildinii (Westwood) are two of the most important seed sucking pests affecting Louisiana soybean production and rice stink bug, Oebalus pugnax (F.) is an important late season pest in Louisiana rice. Exploration of chemicals that exhibit attraction or repellent activities toward major stink bug species would be beneficial in developing push–pull strategies. Spinosad is a commercially available natural insecticide that may have arrestant, attractant, or phagostimulant properties against stink bugs. To test this, a series of laboratory experiments were conducted to investigate the tactile, olfactory, and feeding responses of these stink bugs toward two commercial spinosad products (Entrust and Tracer) and technical grade spinosad. In tactile assays, female and male redbanded stink bug were arrested by Entrust, Tracer, and technical grade spinosad, whereas only rice stink bug and southern green stink bug males were arrested by Entrust. Y-tube assays revealed no attraction to any of the products by either male or female rice stink bug, redbanded stink bug, or southern green stink bug. In paired (treated or untreated soybean seed) feeding preference experiments, southern green stink bug showed no preference for any treatment, whereas redbanded stink bug fed more on Entrust- and Tracer-treated seed. From these results, spinosad appears to have an arrestant and phagostimulant effect on redbanded stink bug in the laboratory.


2020 ◽  
Vol 113 (3) ◽  
pp. 1248-1253
Author(s):  
Blake E Wilson ◽  
Michael J Stout

Abstract The rice stink bug, Oebalus pugnax (F.), is the most important pest of headed rice, Oryza sativa L., in the United States. Numerous studies have attempted to quantify the impact of O. pugnax feeding on rice yield and grain quality, but these studies have often produced conflicting results. Across mid-south U.S. rice, thresholds based on sweep net sampling are used to determine the need for insecticide applications, but few studies have related sweep net captures to rice quality parameters. Field trials were conducted in Louisiana in 2015 and 2016 that used different rates of insecticides to establish rice plots with mean O. pugnax infestations ranging from 0.8 to 24.6 insects per 10 sweeps. Insecticide applications improved panicle weight and head yields as well as decreased percentage peck. A series of linear regressions examined relationships between O. pugnax captures and rice yield and quality parameters, including panicle weight, head yield (% whole kernels), and peck (discolored grains). Mean O. pugnax sweep net captures across all sampling dates in both years were significantly and negatively correlated to panicle weight and head yield and positively correlated to percentage peck. Peck was negatively correlated with head yield. Results from sampling at different maturity stages indicate sweep net captures at grain fill and soft dough stages had the greatest influence on rice yield and quality parameters, respectively. Further research into impacts of milling quality reductions on farm revenue and the influence of cumulative infestations over grain development is needed to improve economic thresholds for O. pugnax in rice.


2008 ◽  
Vol 43 (3) ◽  
pp. 257-267 ◽  
Author(s):  
S. Y. Young ◽  
J. K. Greene ◽  
G. M. Lorenz

A series of field-cage experiments were conducted in 2002 and 2003 in southeast Arkansas to measure the impact of feeding by green stink bug, Acrosternum hilare (Say), on soybean yield and seed damage. Stink bugs were collected from local soybean fields and released in 1.8 × 1.8 × 1.8 m walk-in screen cages at densities of 0, 3, 9, and 18 bugs per row-m on maturity group (MG) IV and MG V soybean at different stages of crop phenological development. Damaged seed at harvest was significantly related to caged density of A. hilare in most of the cage experiments. Yield loss was associated with density of caged bugs in 7 of 11 different experiments and ranged from 13.4–60.5 kg/ha (0.2–0.9 bu/a) lost per bug per row-m. MG IV and MG V soybean were similarly impacted by density of A. hilare when exposed at the same stage of crop development. Feeding by small and large nymphs at early (R2–R3) and mid (R5–R6) reproductive stages resulted in significant yield loss. Feeding damage was apparent on late reproductive stage soybean (R7–R8), but no measurable impact on yield was observed. This suggested that thresholds could be raised or control efforts could be terminated for stink bugs infesting R7–R8 stage soybean. Damage due to feeding by stink bugs is related to various factors, but crop phenology, density of bugs, and length of infestation time are consistent and predictable influences that are interrelated, and all should be considered in determining the need to control field populations.


Science ◽  
1960 ◽  
Vol 132 (3438) ◽  
pp. 1480-1481 ◽  
Author(s):  
M. S. Blum ◽  
J. G. Traynham ◽  
J. B. Chidester ◽  
J. D. Boggus

2019 ◽  
pp. 2015-2021 ◽  
Author(s):  
Paulo Roberto da Silva ◽  
Ademar Novais Istchuk ◽  
Thomas E. Hunt ◽  
Cristina Schetino Bastos ◽  
Jorge Braz Torres ◽  
...  

We determined the susceptibility of vegetative corn stages to Dichelops melacanthus damage, and how seed treatment can reduce damage and yield loss. Two field trials were carried out. In the first, corn plants were artificially infested with D. melacanthus male/female pairs at rate of 0.5 pair per plant at different vegetative stages and infestation periods lasting 7-28 days (V1-V3, V1-V5, V1-V7, V1-V9, V3-V5, V3-V7, V3-V9, V5-V7, V5-V9, and V7-V9), plus a control without infestation. In the second, corn plants were artificially infested at a rate of one male/female pair per plant at different vegetative stages and infestation periods (V1-V3, V1-V5, V1-V7, V3-V5, V3-V7 and V5-V7) and treated with two pesticide seed coatings: (i) fungicide [carbendazim + thiram (150 g i.a. per L and 350 g i.a. per L)] + insecticide [clothianidin (600 g i.a. per L)] or (ii) only fungicide (carbendazim + thiram), plus three controls without infestation and with only fungicide-treatment (V1-V7, V3-V7 and V5-V7). In both trials, plants were caged during the entire period in order to hold stink bugs in contact with plants and to avoid injury from other arthropods. The most stink bug susceptible corn growth periods were from V1-V5 and from V1-V7. Seed treatment with clothianidin at the rate of 3.5 mL per Kg during the most susceptible infestation periods increased yield gain of 37.8 to 61%. Treatment with clothianidin during V1-V5 and V1-V7 caused 40% to 50% D. melacanthus adult mortality, respectively.


2008 ◽  
Vol 43 (2) ◽  
pp. 191-207 ◽  
Author(s):  
Glynn Tillman

The objective of this on-farm study was to determine if peanuts harbor populations of stink bugs (Heteroptera: Pentatomidae) and their natural enemies in Georgia. Eight species of phytophagous stink bugs were found in peanuts over the 5-yr study. The predominant stink bug species were Nezara viridula (L.), Euschistus servus (Say), Euschistus quadrator (Rolston), and Oebalus pugnax pugnax (F.). The remaining 4 species, Acrosternum hilare (Say), Euschistus tristigmus (Say), Euschistus ictericus (L.), and Thyanta custator accerra McAtee, were found in relatively low numbers. All developmental stages of N. viridula, E. servus, E. quadrator, A. hilare, and O. p. pugnax were collected at various times in the study indicating that these 5 species of stink bugs were developing on this crop. Seasonal abundance of N. viridula and E. servus nymphs and adults provided further support that these 2 species of stink bugs developed on peanuts. At least 1 generation of N. viridula and E. servus occurred in peanuts each year, and generally some of the adults that developed on peanuts oviposited on peanuts producing another generation of nymphs in this crop. Because only adults of T. c. accerra, E. tristigmus, and E. ictericus were found in peanuts, these 3 stink bug species probably were not developing on this crop. Adult stink bugs were parasitized by the tachinid parasitoids Trichopoda pennipes (F.) and Cylindromyia spp. Stink bug eggs were parasitized by the scelionids, Trissolcus basalis (Wollaston), Trissolcus thyantae Ashmead, Trissolcus brochymenae (Ashmead), Telenomus podisi Ashmead, and Gryon obesum Masner, and an unknown encyrtid species. Geocoris punctipes (Say), Geocoris uliginosus (Say), Orius insidiosus (Say), Podisus maculiventris (Say), and Oxyopes salticus Hentz preyed on stink bugs in peanuts. Peanuts harbor populations of stink bugs and their natural enemies, and thus the role peanuts play in landscape ecology of stink bugs needs to be ascertained to better understand how to manage stink bug populations in landscapes in which peanuts are associated with other crops.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 688
Author(s):  
Judith M. Stahl ◽  
Davide Scaccini ◽  
Alberto Pozzebon ◽  
Kent M. Daane

California currently produces about a quarter of the world’s pistachios. Pistachio nuts are susceptible to feeding by stink bugs and leaffooted bugs; therefore, the invasive presence of the highly polyphagous brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is a concern to California pistachio growers. We aimed to assess the potential of H. halys to cause yield loss and nut damage to pistachios, which had not yet been assessed in the field. Over two years, terminal branch ends with pistachio clusters were enclosed in organdy cages from spring to fall and exposed to either H. halys, the native stink bug Chinavia hilaris Say (Hemiptera: Pentatomidae), or leaffooted bug Leptoglossus zonatus (Dallas) (Hemiptera: Coreidae), for 4–7-day feeding periods at different times of the season. We found that H. halys adults cause more epicarp lesions (external damage) when recorded at harvest time than the native species. They did not, however, cause more kernel necrosis (internal damage) than the two native species tested, which is a more relevant damage criterion for commercial production. There were no differences among insect species for any other recorded damage criteria. We conclude that H. halys could cause similar damage as the native species but note that H. halys population densities in California are still low and future damage levels will be dependent on this pest’s population density.


Sign in / Sign up

Export Citation Format

Share Document