scholarly journals Phylogeography and Spatial Genetic Structure of the Southern Torrent Salamander: Implications for Conservation and Management

2006 ◽  
Vol 97 (6) ◽  
pp. 561-570 ◽  
Author(s):  
Mark P. Miller ◽  
Susan M. Haig ◽  
R. Steven Wagner
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8002
Author(s):  
Luis C. García-Zubia ◽  
Javier Hernández-Velasco ◽  
José C. Hernández-Díaz ◽  
Sergio L. Simental-Rodríguez ◽  
Carlos A. López-Sánchez ◽  
...  

Background Spatial genetic structure (SGS) analysis is a powerful approach to quantifying gene flow between trees, thus clarifying the functional connectivity of trees at population and landscape scales. The findings of SGS analysis may be useful for conservation and management of natural populations and plantations. Pinus cembroides is a widely distributed tree species, covering an area of about 2.5 million hectares in Mexico. The aim of this study was to examine five natural seed stands of P. cembroides in the Sierra Madre Occidental to determine the SGS at population (within the seed stand) and landscape (among seed stands) levels in order to establish guidelines for the conservation and management of the species. We hypothesized that P. cembroides, in which the seeds are dispersed by birds and mammals, creates weaker SGS than species with wind-dispersed seeds. Methods DNA fingerprinting was performed using the amplified fragment length polymorphism (AFLP) technique. In order to estimate the SGS at population and landscape levels, we measured the geographical (spatial) distance as the Euclidean distance. We also estimated the genetic distances between individuals using the pairwise kinship coefficient. Results The results showed non-significant autocorrelation in four out of five seed stands studied (i.e., a mainly random distribution in the space of the genetic variants of P. cembroides at population level). Discussion SGS was detected at the landscape scale, supporting the theory of isolation by distance as a consequence of restricted pollen and seed dispersal. However, the SGS may also have been generated by our sampling strategy. We recommended establishing a close network of seed stands of P. cembroides to prevent greater loss of local genetic variants and alteration of SGS. We recommend seed stands of P. cembroides of a minimum width of 225 m.


2020 ◽  
Vol 40 (4) ◽  
pp. 628-635
Author(s):  
Caroline J. Blackmore ◽  
Jennifer R. Ovenden ◽  
Toby P. Piddocke ◽  
Les Christidis

Failure to consider genetic structure in fish populations when collecting aquaculture broodstock can negatively affect fitness, and hence conservation and management goals. Here we used mitochondrial DNA from the 5’ end of the control region (D-loop) and four microsatellite markers to evaluate population genetic structure in the Mangrove Jack Lutjanus argentimaculatus with a view to guiding broodstock collection at the southern extremity of its east Australian range. There was no evidence of genetic structure within the entire tropical, subtropical and temperate east Australian distribution of L. argentimaculatus. Although this species may exhibit clinal morphological and life-history variation at its southern range limit, we did not detect wide- or fine-scale spatial genetic structure to indicate the presence of non-random evolutionary processes. Broodstock collection of L. argentimaculatus need not be geographically restricted in eastern Australia, but fisheries management should consider variation in life history and recruitment success at the species’ edge.


2005 ◽  
Vol 250 (3-4) ◽  
pp. 231-242 ◽  
Author(s):  
M. Y. Chung ◽  
K.-J. Kim ◽  
J.-H. Pak ◽  
C.-W. Park ◽  
B.-Y. Sun ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kelly B. Klingler ◽  
Joshua P. Jahner ◽  
Thomas L. Parchman ◽  
Chris Ray ◽  
Mary M. Peacock

Abstract Background Distributional responses by alpine taxa to repeated, glacial-interglacial cycles throughout the last two million years have significantly influenced the spatial genetic structure of populations. These effects have been exacerbated for the American pika (Ochotona princeps), a small alpine lagomorph constrained by thermal sensitivity and a limited dispersal capacity. As a species of conservation concern, long-term lack of gene flow has important consequences for landscape genetic structure and levels of diversity within populations. Here, we use reduced representation sequencing (ddRADseq) to provide a genome-wide perspective on patterns of genetic variation across pika populations representing distinct subspecies. To investigate how landscape and environmental features shape genetic variation, we collected genetic samples from distinct geographic regions as well as across finer spatial scales in two geographically proximate mountain ranges of eastern Nevada. Results Our genome-wide analyses corroborate range-wide, mitochondrial subspecific designations and reveal pronounced fine-scale population structure between the Ruby Mountains and East Humboldt Range of eastern Nevada. Populations in Nevada were characterized by low genetic diversity (π = 0.0006–0.0009; θW = 0.0005–0.0007) relative to populations in California (π = 0.0014–0.0019; θW = 0.0011–0.0017) and the Rocky Mountains (π = 0.0025–0.0027; θW = 0.0021–0.0024), indicating substantial genetic drift in these isolated populations. Tajima’s D was positive for all sites (D = 0.240–0.811), consistent with recent contraction in population sizes range-wide. Conclusions Substantial influences of geography, elevation and climate variables on genetic differentiation were also detected and may interact with the regional effects of anthropogenic climate change to force the loss of unique genetic lineages through continued population extirpations in the Great Basin and Sierra Nevada.


2021 ◽  
Vol 78 (2) ◽  
Author(s):  
Błażej Wójkiewicz ◽  
Andrzewj Lewandowski ◽  
Weronika B. Żukowska ◽  
Monika Litkowiec ◽  
Witold Wachowiak

Abstract Context Black poplar (Populus nigra L.) is a keystone species of European riparian ecosystems that has been negatively impacted by riverside urbanization for centuries. Consequently, it has become an endangered tree species in many European countries. The establishment of a suitable rescue plan of the remaining black poplar forest stands requires a preliminary knowledge about the distribution of genetic variation among species populations. However, for some parts of the P. nigra distribution in Europe, the genetic resources and demographic history remain poorly recognized. Aims Here, we present the first study on identifying and characterizing the genetic resources of black poplar from the Oder valley in Poland. This study (1) assessed the genetic variability and effective population size of populations and (2) examined whether gene flow is limited by distance or there is a single migrant pool along the studied river system. Methods A total of 582 poplar trees derived from nine black poplar populations were investigated with nuclear microsatellite markers. Results (1) The allelic richness and heterozygosity level were high and comparable between populations. (2) The genetic structure of the studied poplar stands was not homogenous. (3) The signatures of past bottlenecks were detected. Conclusion Our study (1) provides evidence for genetic substructuring of natural black poplar populations from the studied river catchment, which is not a frequent phenomenon reported for this species in Europe, and (2) indicates which poplar stands may serve as new genetic conservation units (GCUs) of this species in Europe. Key message The genetic resources of black poplar in the Oder River valley are still substantial compared to those reported for rivers in Western Europe. On the other hand, clear signals of isolation by distance and genetic erosion reflected in small effective population sizes and high spatial genetic structure of the analyzed populations were detected. Based on these findings, we recommend the in situ and ex situ conservation strategies for conserving and restoring the genetic resources of black poplar populations in this strongly transformed by human river valley ecosystem.


PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e25359 ◽  
Author(s):  
Patrick M. A. James ◽  
Dave W. Coltman ◽  
Brent W. Murray ◽  
Richard C. Hamelin ◽  
Felix A. H. Sperling

Sign in / Sign up

Export Citation Format

Share Document